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because missing data are commonly encountered in practice and most data

analysis procedures were not designed for missing data. In this paper, we
introduce a recent comparison for the methodologies that handle missing data problems.
Some real examples of missing data problems, the pattern of missing data and the
mechanisms that lead to missing data will be introduced in the case of regression
analysis. A comparative study among the complete case (CC) method, the available case
(AC) method, the least squares (LS) on imputed data and the maximum likelihood (ML)
are preseénted. A real data and GPA scores for undergraduate students, College of
Administrative Sciences at King Saud University in 1998, is used to make an artificial
missing data in three different types of the mechanisms: Missing At Random (MAR),
Missing Completely At Random (MCAR), and Missing Not At Random (MNAR). Then
we reanalyze the new data set, using a Monte Carlo simulation, for the different methods
to make some comparisons.

T he statistical analysis with missing data is an important applied problem

Key Words: Missing Data, Imputed Data; Regression Analysis; Simulation Studies.

1. Introduction

It is natural to treat the data that are not observed as missing. For example, the
respondents in a household survey may refuse to report income. In an industrial
cxperiment, some results are missing because of mechanical breakdowns unrelated to the
experimental process. However, it is less natural to treat the unobserved data as missing.
Such that, in an opinion survey some individuals may be unable to express a preference
for one candidate over another. The lack of a response is essentially an additional point in
sample space of the variable being measured, which identified as “Don’t know”,
“Refused”, “unintelligible” and so on.
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Most statistical software packages allow using more than one code to identify
particular type of non-response. Therefore, we can exclude units that have missing value
codes for any of the variables involved in an analysis.

The literaturc on the statistical analysis of data with missing values has flourished
since the carly 1970s, spurred by advances in computer technology that made previously
laborious numerical calculation a simple matter. The problem of estimating the
parameters of statistical models when some observations arc missing has been treated
along two different types. In the first type of methods, the missing data are considered as
functions of additional parameters see Beale and Little (1975); Conniffe (1983); Little
and Rubin (1983, 2002); Dixon (1983, 1988); and Park, Lee and Woolson (1993).

Many data sets can be arranged on a rectangular or matrix form, where the rows
correspond to observational units or participants and the columns correspond to items or
variables. With rectangular data, there are several important classes of overall missing
data patterns, for detail see Little & Rubin (2002), but we will consider the univariate
pattern examples of missing data:

Missing values occur on an item Z but a set of P other items X; , X ,...,.X, is
complete observed data, we call this a univariate pattern. The univariate pattern is also
meant to include situations in which Z represents a group of items that is either entirely
observed or entirely missing for each unit.

Rubin’s (1976) definitions describe statistical relationships between the data and
the relationships between the data and the missingness, not causal relationships. Because
we often consider real world reasons why data become missing, let us imagine that one
could code all the myriad reasons for missingness into a set of variables. This set might
include variables that explain why some participants were physical unable to show up
(age, health status), variables that explain the tendency to say “I don’t know” or “I’m not
sure” (cognitive functioning), variables that explain outright refusal (concerns about
privacy), and so on. This causes of missingness are not likely to be present in data set, but
some of them arc possibly related to X and Z.

If the participants arc independently sampled from the population, then we can
definc the missing data as “Missing At Random” (MAR), if the missing data depends on
X but not Z. However, if the missing data does not depend on his or her own values of X
or Z (and by independence, does not depend on the X or Y of the other participants
either), then the missing data is called “Missing Completely At Random” (MCAR). The
missing data arc said to be “Missing Not At Random” (MNAR), if the missing data
depends on Z.
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2. Methods of Estimation

We explain the methods on which the missing data are considered as functions of
additional parameters, such that the least squares solution with complete case analysis,
the available case analysis, and the least squares on imputed data, and the maximum
likelihood.

2.1 The exact least squares solution with complete data

The classical linear regression model is concerned with the association between a
single dependent variable Y and a collection of predictor variables X, X3, ..., Xp. The
regression model that we have considered treats Y as a random variable whose mean
depends on fixed values of the X;'s, This mean is assumed to be a linear function of the
regression coefficients bg, by, by, . . ., bp. Suppose all the variables Y, X, Xa, ..., Xp
are random and have joint distribution, not necessarily normal, with mean z, an (p+1)
x 1 vector and variances-covariance matrix £, an (p+1) x (p+1) matrix. Partitioning
4 and I in an obvious fashion, then

Ky
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Where Zyy = (O'm Oy, Onx, ), and En can be taken to have full rank.We

focus on homoscedastic linear regression where
P
EY\ X, X, X,p)= B+ Y BX, |
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I

Var(Y \ X, X,,,Xp)=0"
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The mean square crror, for complete data, is minimized, when
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Least squares (LS) estimates are obtained by rcplaclngp and X with the first and second
sample moments.

2.2 The complete-case analysis (CC)

In this method, we discard any case which contains a missing value (i.e. we delete
any row that contains a missing value from the rectangular data), and we analyze the
remaining data by using the standard statistical analysis without modification. This
method is also known as "list wise deletion" or "case deletion". Rubin (1976) suggested
the dropping regressor variables with high levels of non-response, while Little -(1993)
applied this method in multiple regression case.

2.3 The available-case analysis (AC)

A natural alternative procedure for complete case analysis is to include all the
available values for estimating x andZ. This method is called “Available-Case” and

some time called “Pair-wise deletion”. We use every observed value of X; to estimate the
standard deviation of X;, and every observed pair of values (Xj, Xy) to estimate the
covariance of Xj, and X . That is

ut) '(T;r)_“jZ(Xu XU‘”XX Xut)) @

Where n™ is the number of cases with both X; and Xy observed, and the means
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X4 XU and the summation in (2) are calculated over those n® cases. Let S, and
S5t be the sample variances of X; and Xy from available cases,

A defect of this method is that the estimated covariance matrix of the X’s is not
necessarily positive definite. Haitovsky (1968) found this problem is severe when the
variables X’s are highly correlated, while Dixon (1983) suggested the estimator of sample
wvariances as

S-‘(m -

1 w -
J ‘(;,ka__O%(Xy"X}J)XXa —X,“”). ©)

Where X, X" be the sample mean from the available cases in variables X; and Xy,
respectively. The variance covariance matrix for AC estimators is

~2
var(f)= <53 _ 0)
n

Where L and G* are AC estimates of Zxy and 0 ,and 71 is the harmonic mean of

the sample size of the individual variables (Dixon, 1988). Little (1993) applied this
method in multiple regression cases.

2.4 The least squares on imputed conditional means

We impute (or fill in) the missing X's using the regression of Y on X’s and
compute the filled in data by ordinary least squares (OLS) and reanalyze the new data
with the ordinary least squares (OLS) method. There are different ways to impute the data
and we will concern with the following ways of imputations

A simple approach imputes missing X's by their unconditional sample mean.
Haitovsky (1968) found that, assuming MCAR, this method yields an inconsistent
estimate ofZ. The sample variance of X; is biased by a factor (n®-1)/(n-1) and the
sample covariance of X; and X is biased by a factor (n%-1)/(n-1). Adjustment factors
(n-1)/(n9-1) for the variance of X; and (n-1) /(n%- 1) for the covariance of X; and X,
simply yield the estimates of (3).

A worthwhile improvement, imputing conditional means based on X's, is to use
information in the observed X’s in a case to impute the missing X's. Dear (1959) and
Timm (1970) based imputations on a principal component analysis. However, a more
obvious approach is to impute for a missing X by linear regression on the observed X's in
that case, estimated from the complete cascs (Dagenais, 1973).

36



ISSR,CAIRO UNIV. Vol.37,No.1,2004

.For univariate missing data, suppose that X; is observed for (m) cases and missing
for (n - m) cases. Since

P
E(y, /J.’,) =5 +Zﬂ;xg
s
and
P
E(y, X2, X135005 xlp) = fo+ B, +Zﬂjxﬁ
s=2
where x =E(x,, /x,,,...,x,p). Thus, if conditional means x; are substituted for missing
values of Xj;. Then (LS) on the filled-in data- produces consistent estimates of the
regression coefficients assuming MCAR. Let (s) signifies to the set of subscripts (2, ... p)
and let o,,, and o,,,, denote the residual variances of Y given Xy, ..., Xp and Y given

Xy, Xa, . . . , Xp respectively. To compensate for the increased residual variance when X,
is missing, incomplete cases should be assigned the reduced weight.

W= Oyy.1s / Opys = l—plzy.s )

Where p,,, is the partial correlation of X, and Y given X3, . . ., Xp. Replacing the

parameters in (5) by sample estimates yield weights proposed by (Dagenais, 1973 and
Beale and Little, 1975). The imputations x; depend on the unknown regression
parameters, which in practice must be estimated from the data.

Gourieroux and Montfort (1981) and Conniffe (1983) noted that estimation error
in regression coefficients inflates the residual variance and introduces a correlation
between the incomplete observations. This does not affect the consistency of the (WLS)
estimates, but does affect the best choice of weight and consistency of estimates of
standard error. Arguing by a rather loosc analogy with generalized least square (GLS),
these authors proposed improved weight.

(1-4,.)>

A (S
Which is approximately(5), when the fraction of complete cases is large, but gives less
weight to the incomplete cases. Dagenais (1973) proposed this weighting with
imputations and weights based on the complete cases. Beale and Little (1975) studied a
similar method but with imputations based on an estimate of the covariance matrix
Z_that used all the data. Analogs of the weight (6) for general pattern of missing data

have not been developed.

w=

©
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2.5 The maximum likelihood method

Many method of estimation for incomplete data can be viewed as maximizing the
likelihood function under certain modeling assumptions. Anderson (1957) introduced the
important idca of factoring the likelihood to obtain explicitly ML solutions for special
pattern of missing data. Gourieroux and Montfort (1981) applied Anderson’s method to
regression with missing onc independent variable for data pattern in figure (1), in the case
of multivariatc normal distribution, with mean x and variance covariance matrixZ . The
distribution of X; and Y given the other X’s can be defined as

f (xl,y /xz,---,xp;t?):f (xl/y,xz,---,xp;ﬁ)f (y /xz,---,xp;gi,)

The corresponding likelihood of ¢ and ¢, are

L(¢n¢z)=L1 (ﬂ)[’z(‘ﬁz) ()

Where L is the product of the normal density of X, given X3, ..., Xp and Y over (m)
complete observations, and L, is the product of the normal density of Y given X3, ..., Xp
over all (n) observations. Since @ and ¢, are distinct sets of parameters their ML
cstimates arc obtained by maximizing L; and L, separately. If @ is the resulting ML
estimate of@, then the ML estimate of any function,6(g), of ¢ is obtained. The

r
parameter ¢=(crm, Byi2sG s By sy By ,y) is one to one monotone function of the

original parameter 9:(;9’[_1“ ﬂ”‘_h,a’)' of the joint distribution of X; and Y. In

particular, thc parameters of @ can be expressed as the following functions of the
components of g :

B = Pz —, ®
Hay yay Oyys
B By Oy "ﬁ;aﬂua"w . ©)
O\1sy +ﬂluraw
and
ahn OngTys (10)

= 7
Oy + By 5y

38



ISSR,CAIRO UNIV. Vol.37,No.1,2004

Where the parametersﬁ.,, ,,,,,ﬂ| ;.3 (j =2,...,p), are the slope coefficients of Y, and

X, (j =2,...,p), and 0,,,, is the residual variance for the regression of X;onXy, ...,
X,, Y from (m) complete cases. Appling Anderson’s method to the missing data, we get

f(-"ny /xz,...,xp;0)=]ﬂ[f (x,,y /x,,---,xp;é’).ll[f(y /x,,---,xp;e)

i=l i=m+l

=ﬁf (x,/x,,---,xp;{))f (y /xz,---,xp;e).ﬁf(y /xz,---,xp;ﬁ)

i=] i=m+1

=ﬁf (y 12300,x 38 _ﬁf (x,/xz,---,x,,;%) | (11)

The maximum likelihood estimates of¢ can be obtained by independently maximizing
the likelihoods corresponding to these two components. Substituting ML estimates of ¢
in (8)-(10), we can now be obtained the ML estimate of 6.

The variance covariance matrix of 0 can be found as follows:

var (6)=va (8)-8[ 1\ (6)-1'(4)]6. o

Where ;
) 5 1=12,
¢,

where the symbols “ "and “  represent the regression estimate from (m) and (n)
observations, respectively. Notc that, the variance in (12) does not involve partial
derivatives with respect tod, and the last term in the right hand is positive which

represents the reduction in variance from including the incomplete cases. For more detail
about more complex missing data patterns, see Little and Rubin (2002).
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3. Simulation Study

Although missing data studies are beginning to reappear in the literature, no
recent studies have examined the performance of ML estimation in the multiple
regression contexts. Although there is a substantial body of missing data research in the
area of multiple regression, much of this literature is dated /or is quite limited by current
simulation standards. For example, most simulation studies used only 50 or fewer
itcrations (Little, 1988; Raymond & Roberts, 1987), and several studies used only 10
itcrations (Beale & Little, 1975; Haitovsky, 1968). Clearly, such studies are inadequate
by currcnt computing standards and should be viewed with some caution.

The goal of this study was to investigate the performance of the ML estimator
relative to three missing data method (CC, AV, and IMC) within the context of four
predictors multiple regression model. A comprehensive Monte Carlo simulation study
was designed to address four research questions: How do missing data techniques differ
with respect to (i) regression coefficient bias, (i) Mean square error, (iii) Relative
cfficiency of the parameters estimates, and (iv) Closeness to the normal distribution?.

Using four predictor multiple regression model, our simulation was manipulated
within thc missing data patterns (MCAR, MNAR, and MAR), and the missing data
technique (CC, AV, IMC, and ML). To illustrat¢ missing data problems and methods, we
used the real data, in 1998, from undergraduate students in King Saud University (KSU),
Riyadh, Saudi Arabia. A total of 1352 raw data were obtained” within four predictor
variables. X; is the percentage score that the student had taken from high school. X3 is the
number of credited hours that the student had taken in the first term in KSU, Xj is
number of credited hours that the student had passed in the first term, Xy is the high
school type (a binary variable indicating whether the student had taken his high school
certification in science =1 or not =2), and Y is the GPA scores for the student.

An artificial variable U =X, +6Y +{ was created, where ¢ the random
number is gencrated from normal distribution with mean zero and variance one. Valucs
of X; were deleted when U was positive (this yield data set with half values of X; was
missing). Three mechanisms werc simulated by the following choices of §;, and &, : (a)
MCAR was selected whend,= &, =0, (b) MNAR was selected whend=1,and 6, =0,

and (c) MAR was selected whend,=0, and 6, =1.

The LS regression yield coefficient and standard errors estimates, these results
will be compared with thosc from incomplete data methods after values of X; have been
deleted in various ways. Tie -deletion of values from a complete data set is rather
artificial, but it allows the mechanism of deletion to be varies and provides comparisons
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with the regression results before deletion.

o The regression coefficients bias was defined as the differences between averages
coefficient estimates in missing data technique from the 1000 run and its least square

estimate from completc data (true parametersf3,, ), i.c. B - B, =0123,4, and
mean squares deviation, which cquivalent to mean squares crror when f,, = /3, can be
calculated as cfficiency of cstimator from the following equation:

S L (5 g 2,3,4
S PT - !=0,1, 3y
M_P-- 1ooo§(ﬂ" ﬁ"')’

o The relative cfficiency can be computed as follows:

Ad

The w1834

aol‘:

o The Kolmogorov goodness of fit test can be used to confirm if the data arose from the
normal distribution. With this test, it is necessary to know the mean and variance of
the normal distribution being tested for fit. So, the parameters of the distribution, from
LS estimated, must be specified. A method to compute the p-values for Kolmogorov

test is asymptotic only.

A computer program, using Minitab software, was made for the comparatively
studies. After the missing data pattems were created, regression models were estimated
using different missing data techniques. We repeated the simulation 1000 times, and the
simulation results can be found from tables (1) to (8).

4. Analytical Results

As noted by Little & Rubin (2002), the performance of a given missing data
technique is largely dependent on the mechanism that cause the missing data. Rubin
(1976) was the first to explicate formally missing data theory and the mechanisms that
cause missing data. According to Rubin (1976), the MCAR and MAR conditions are
considered ignorable missing data mechanism in the sense that unbiased parameters
estimates can be obtained using standard ML estimation. That is, ML requires only that
the weaker MAR assumption hold. In contrast, CC and AV require the strict MCAR
assumption, Analytical results of missing data techniques from our simulation studies
will be discussed in this section.
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MCAR Data

The missing data techniques (CC, AV, IMC, and ML) yield unbiased point
estimates of the parameter # as shown in tables (1) - (4). In addition, the mean square
deviation of the parameters was approximately zero for all methods of estimation.
Therefore, any obvious result of implementing CC is that a great deal of complete data is
potentially lost. Obviously, we know that the missing data, which will be discarded as
result of using CC, will reduce statistical power and leading to increased sampling
variability of parameter cstimates. So, the sampling variance of each method was
examined relative to that of LS in complete data. Relative efficiency (RE) values less that
unity reflected situations in which methods less sampling variability, i.e. greater
efficiency. As seen from table (1) to table (4) that IMC performed better relative
cfficicncy than any other techniques. ML yield efficiency gains relative to CC and AV,
but the sampling variability of AV was actually lower than CC technique.

Finally, we used P-value of the Kolmogrove test (KT) to see the closeness
distribution of parameter estimates from the distribution of LS estimates in complete data.
We found that, the P-value of parameter estimates in AV, IMC, and ML are highly
significant except in the predictor variables, which has missing data. The P-value of CC
indicated that there is no significant different which mean that the parameter estimates are
coming from different normal distribution parameters.

MAR Data __
The missing data techniques (CC, AV, IMC, and ML) yield unbiased estimates
for the parameter 3, see tables (5 - 8), while ML is approximately unbiased estimated.

The mean square deviation is good criteria to choose among methods, not bias.
Therefore, we found that ML is the smallest MSD among missing data techniques, while
CC is the largest. We can consider all technique have zero MSD in two decimal digital
numbers.

The relative efficiency values appeared that CC i§ better, in sense of lower values,
than any other techniques. ML performed less variability than IMC and AV. The P-values
of Kolmogrove test showed that all techniques came from the same original distribution.

MNAR Data
In MNAR data, we satisfied bias estimators for# and the MSD have

approximately zero in all missing data techniques. In relative efficiency values, we found
that IMC has less variability than ML, which has gain of efficiency than AV and CC. All
the parameter estimated came from the same original distribution as shown by
Kolmogrove test, see tables below.
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Selecting an Approach:

We hoped that these guidelines would be helpful in supplementing and organizing
the data and the manner in which it was collected. The first decision must an investigator
make is whether the data may be assumed to be randomly missing or not. If not, the
investigator is placed in the difficult situation of knowingly having a biased sample and
any of the methods involving substituting of an imputed value for the missing value will
only aggravate the problem by perhaps adding further bias to the sample. If data are
randomly missing, and when the desired goal is parameter estimation, the investigator
can delcte cases or choose some method to treat missing data.

From the missing data techniques (MCAR, MAR, and MNAR), our resulte
indicated that ML estimation was superior to the three ad hoc techniques (CC, AV, and
IMC) across the simulation studies. ML parameter estimates generally had less bias, less
MSD, and less sampling variability than the three ad hoc methods. In addition, TIMC
estimation was superior to CC and AV techniques in the sense that it has less bias, MSD,
and sampling variability. It is simple to implement that uses all-available information

does not reduce the sample size.

Finally, we hope that this guideline will help an investigator to make choices,
from different methods of estimation in various missing data techniques, in their own
research. This simulation has been limited in scope, as all simulations must be. We hope
that it will shed some light on performance of different methods of estimation in the case

of missing values in regression analysis.
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Table !1! Biucdi MSDi P-value in l('l‘i and RE for BI- 0.0111 and STD=0.002354

METHODS MCAR
Bias MSD KT RE
TRUE VALUE 0.0111 . 0.0000 1.0000
cC 0.0000 0.0000 0.1531 1.4180
AV 0.0000 0.0000 0.1531 1.4243
IMC 0.0000 0.0000 0.0383 1.1183

MLE 0.0000 0.0000 0.3209 1.4062

Table 52! Bilsed‘ MSDI P-value in l('I‘i and RE for B2=-0.1124 and STD=0.008414

METHODS . , MCAR
Bias MSD KT RE
P e e SRR T T e
TRUE VALUE 0.1124 ' 0.0000 1.0000

Table !4! Biased, MSD, P-value in KT, and RE for B4= 0.0998 and STD=0.026190

METHODS ol
PRI AR . e —— s
TRUE VALUE 0.0998 * 0.0000 1.0000
cc 0.0005 0.0006 0.8136 1.4161
AV ©0.0003 0.0001 0.0000 1.1160
IMC 00002 - 00001 0.0000 1.0537
MLE 0.0002 00001 0.0000 1.0557

e e e e R e e e i e
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Table ssz Biased, MSDi P-value in KT, and RE for B1=0.0111 and STD=0.002354

MAR
M Bias MSD KT RE
TRUE VALUE 0.0111 . 0.0000 1.0000
CcC -0.0076 0.0001 0.0000 0.7858
AV 0.0104 0.0001 0.0000 1.3874
™MC <0.0076 0.0001 0.0000 1.1028

MLE -0.0003 0.0000 0.0000 0.8027

Table !6! Biasedi MSD! P-value in KT, and RE for B2=-0.1124 and STD=0.008414

METHODS MAR
Bias MSD KT RE
TRUE VALUE 0.1124 . 0.0000 10000
CC 0.0445 0.0020 1.0000 0.8436
AV -0.0027 0.0000 0.0000 1.1168
IMC 0.0031 0.0000 0.0000 1.0065
MLE -0.003 0.0000 0.0000 0.9989

T e ST

Table S;; Biased, MS].')l P-value in KTi and RE for B3=0.1573 and STD=0.002575

METHODS MAR
Bias : MSD- KT RE
TRUE VALUE 0.1573 * 0.0000 1.0000
CC 0.0365 0.0013 0.0000 0.8061
AV 0.0025 0.0000 0.0000 1.1100
IMC 0.0019 0.0000 0.0000 1.0136

MLE 20,0002 00000 0.0000 0.9863

Table (8) Biased, MSD, P-value in KT, and RE for B4= 0.0998 and STD=0.026190

L _______}

METHODS MAR
Bias MSD KT RE
TRUE VALUE 0.0998 . 0.0000 10000
CC 0.0701 0.0051 0.0000 0.7945
AV 20,0363 0.0013 0.0000 1.1124
IMC 0.0269 0.0007 0.0000 1.0419

MLE <0.0036 0.0001 0.0000 0.9783

Table (9) Biased, MSD, P-value in KT, and RE for B1= 0.0111 and STD=0.002354
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AV 0.0091 0.0001 0.0000 1.4579
IMC <0.0088 0.0001 0.0000 1.1392

CcC 0.0254 0.0007 1.0000 1.2022
AV <0.0023 0.0000 0.0000 1.1297
IMC <0.0022 0.0000 0.0000 1.0094

TRUE VALUE 0.1573 * 0.0000 1.0000

cC 0.0021 0.0000 0.0000 1.3391
AV 0.0022 0.0000 0.0000 1.1233
IMC 0.0021 0.0000 0.0000 1.0216
MLE 0.0021 0.0000 0.0000 1.0182
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Table (12) Biased, MSD, P-value in KT, and RE for B4=0.0998 and STD=0.026190

METHODS MNAR
Bias MSD KT RE
TRUE VALUE 0.0998 * 0.0000 1.0000
cc T 00702 0.0053 0.0000 1.3248
AV 20,0354 0.0012 0.0000 1.0858
MC 0.0347 0.0012 0.0000 0.9845
0.9783

MLE <0.0343 0.0012 0.0000
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