HAZARD MODEL ANALYSIS:
SOME APPLICATIONS IN DEMOGRAPHY

By

Farouk Shoieb

1999
I Introduction

In this section, we shall present definitions, notation, and basic facts used throughout.

1.1 Preliminaries

Let T be the waiting time to the occurrence of an event of interest: death, birth, pregnancy, etc.). T is usually called the survival time. The distribution of T can be characterized by the following three equivalent functions.

1-Survivorship Function (or Simply, Survival Function). This function, denoted by S(t), is defined as the probability that an individual survives longer than t:

\[
S(t) = P(\text{an individual survives longer than } t) = P(T > t) = 1 - F(t) \tag{1.1}
\]

In practice, the survivorship function is estimated as the proportion of patients surviving longer than t:

\[
\hat{S}(t) = \frac{\text{Number of patients surviving longer than } t}{\text{Total number of patients}} \tag{1.2}
\]

Where the symbol “\(^\wedge\)” denotes an estimate of the function.

The function S(t) is also known as the cumulative survival rate. To depict the course of survival, Berkson (1942) recommended a graphic presentation of S(t). The graph of S(t) is called the survival curve.

2-Probability Density function (or simply, density function). Like any other continuous random variable, the survival time T has a probability density function defined as the limit of the probability that an individual fails in the short interval t to t + Δt per unit width Δt, or
simply the probability of an event in a small interval per unit time. It can be expressed as:

\[f(t) = \lim_{\Delta t \to 0} \frac{P\left\{ \text{a patient dying in the interval (t, t + \Delta t)} \right\}}{\Delta t} \]

(1.3)

In practice, the probability density function \(f(t) \) is estimated as the proportion of events in an interval per unit width:

\[\hat{f}(t) = \frac{\text{Number of patients dying in the interval begining at time } t}{(\text{Total number of patients}) \times (\text{Interval width})} \]

(1.4)

3. The hazard function \(h(t) \) of survival time \(T \) gives the conditional failure rate. This is defined as the probability of failure during a very small time interval, assuming that the individual has survived to the beginning of the interval, i.e.,

\[h(t) = \lim_{x \to 0} \frac{1}{x} P(t < T \leq t + x \mid T > t) \]

The hazard function can also be defined in terms of the cumulative distribution function \(F(t) \) and the probability density function \(f(t) \) as:

\[h(t) = \frac{f(t)}{1 - F(t)} \]

(1.5)

In practice, the hazard function is estimated as the proportion of patients dying in an interval per unit time, given that they have survived to the beginning of the interval:

\[\hat{h}(t) = \frac{\text{Number of patients dying in the interval begining at time } t}{\text{(Number of patients surviving at t \times Interval width)}} \]

\[= \frac{\text{Number of patients dying per unit time in the interval}}{\text{Number of patients surviving at t}} \]

(1.6)

The hazard function is also known as the instantaneous failure rate, force of mortality and conditional mortality rate. The hazard function thus gives the risk of failure per unit time during the aging process. It plays an important role in survival data analysis. The hazard function may increase, decrease, remain constant or indicate a more complicated process.
The statistical analysis of lifetime or response time data has become a topic of considerable interest to statisticians and workers in different areas such as engineering, medicine, biological and demographic sciences.

In recent years, the use of statistical procedures has thrown substantial research which uses event history models, survival analysis, and hazard rate models to examine sociological phenomena such as retirement, unemployment, and teenage pregnancy, birth interval, marriage duration, mortality, migration and reproductive health studies.

Thus, failure time analysis and hazard models have become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistage demography. The idea of hazard function and failure time analysis, however, have not been properly introduced nor commonly discussed by demographers until the celebrated Cox (1972) was published.

1.2. The Proportional Hazard Regression Model (Cox, 1972)

Studies of association between a random variables X and, the survival time T, may only be partially observable due to censoring has been the focus of many investigations starting with the historical breakthrough by Cox (1972). The so-called Cox regression model or proportional hazards model (PHM) expresses a log-linear relation between X and the hazard function of T:

$$h(t| X = x) = \lim_{\delta \to 0} \frac{P(t \leq T \leq t + \delta | T \geq t, X = x)}{\delta} = h_0(t) e^{\beta x}$$

In this model, $h_0(t)$ is an unspecified baseline hazard, i.e., hazard at $x=0$, and β is an unknown regression coefficient. Cox (1972, 1975) mentioned the following important point regarding PHM. $h_0(t)$
might be identically zero in some time intervals in which no events (failures) occur. Thus, in some cases, one has to argue conditionally on the set of instances at which failures occur.

The Proportional Hazard model, introduced by Cox (1972), is a general non-parametric model appropriate for the analysis of survival data with and without censoring. In the following we first introduce Cox's original model and then discuss some of its extensions to bring the reader up to date.

Suppose that on each of the n individuals involved in the study, in addition to the survival time \(t_i \), one or more measurements are available, on variables \(x_{1i}, x_{2i}, \ldots, x_{pi} \) (Cox calls these explanatory variables). For the \(i \)th individual let values of the \(p \) variables be \(x_{i1}, x_{i2}, \ldots, x_{pi} \). The \(x \)'s may be specific patient characteristics, such as age and white cell count, or functions of time. The problem is to assess the relation between the distribution of survival time \(t \) and the \(x \)'s. Cox suggests that the hazard function be used. Let \(h_i(t) \) be the hazard function of the \(i \)th patient. When survival times are continuously distributed ties can be ignored, and the hazard function is

\[
h_i(t) = h_0(t) \exp \left(\sum_{j=1}^{p} \beta_j X_{ji} \right) \quad (1.7)
\]

Where \(h_0(t) \) is the hazard function of the underlying survival distribution (arbitrary) when all the \(x \) variables are ignored, i.e., all \(x \)'s equal zero, and the \(\beta \)'s are regression coefficients. In fact, \(\sum_{j=1}^{p} \beta_j X_{ji} \) can be replaced by any known function of \(x \)'s and \(\beta \)'s. It is clear that Cox's model assumes that the hazard of the study group is proportional to that of the underlying survival distribution \(h_0(t) \).

Equation (1.7) has many uses. Some of which are summarized below.

1- **Two-Sample Problems.** Suppose that \(p = 1 \), i.e., there is only one \(X \) variable, \(X_1 \) which is an indicator variable,
\[X_{1i} = 0 \text{ if the } i\text{th individual is from sample 1} \\
= 1 \text{ if the } i\text{th individual is from sample 2} \]

Then according to Equation (1.7) the hazard function of samples 1 and 2 are, respectively, \(h_0(t) \) and \(h_0(t) \exp(\beta_1) \). The hazard function of sample 2 is equal to the hazard function of sample 1 multiplied by a constant \(\exp(\beta_1) \) or the two hazard functions are proportional. In terms of the survivorship function:

\[S_2(t) = c \cdot S_1(t) \]

Where the constant \(c = \exp(\beta_1) \) (Nadas, 1970).

2- Two-Sample Problems with covariates. The \(x \) variables in Equation (1.7) can either be indicator variables such as \(x_1 \) in the two-sample problem above or concomitant variables (patient characteristics). Having one or more \(x \) variables representing concomitant variables in Equation (1.7) enables us to examine the relation between two samples adjusting for the presence of concomitant variables.

3- Two-Sample Problems with Time-Dependent Covariate. In Equation (1.7) one or more \(x \) variables can be functions of time. For example, suppose that, in addition to \(x_1 \) above, time dependent variable, \(x_2 = tx_1 \), is introduced. According to Equation (1.7), the hazard in sample 2 is

\[h_2(t) = h_0(t) \exp(\beta_1 + \beta_2 t) \]

\[= ch_0(t) \exp(\beta_2 t) \]

and that in sample 1 remains \(ch_0(t) \).

4- Regression Problems. Dividing both sides of Equation (1.7) by \(h_0(t) \) and taking logarithm, we obtain

\[\log_e \frac{h_1(t)}{h_0(t)} = \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_p x_{pi} = \sum_{j=1}^{p} \beta_j x_{ji} \]

(1.8)

The left-hand side of Equation (1.8) is a function of the hazard for the \(i \)th patient, and the right-hand side is a linear combination of the concomitant
variables x_{i1}, \ldots, x_{pi} with coefficients β_1, \ldots, β_p respectively. The X's can be indicator variables, covariates, and time-dependent covariates. If we let $Y_i = \log_e \left[h_i(t) / h_0(t) \right]$ Equation (1.8) is simply

$$Y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{pi} \quad (1.9)$$

which is a standard multiple regression equation with the concomitant variables as independent variables and a function of the hazard as the dependent variable.

In addition to identifying important prognostic factors, Cox's regression model can also define a prognostic index or hazard ratio, namely $\log_e \left[h_i(t) / h_0(t) \right]$, for each patient. This index or ratio can be used to compare two treatment groups as well as prognoses between patients. As mentioned earlier, $h_0(t)$ is the hazard function when all of the independent variables are ignored. If the independent variables are standardized about the mean, the following model is used.

$$\log_e \left(\frac{h_i(t)}{h_0(t)} \right) = \beta_1 (x_{i1} - \bar{x}_1) + \ldots + \beta_p (x_{pi} - \bar{x}_p) \quad (1.10)$$

where \bar{X} the average of the ith independent variable for all patients, then $h_0(t)$ is the hazard function when all variables are at their average values.

5-Estimation of the parameters. Now the question is how to estimate the coefficients, β_1, \ldots, β_p. Cox suggests a maximum likelihood procedure where the likelihood function is based on a conditional probability of failure. Suppose that $t_{(1)} < t_{(2)} < \ldots < t_{(k)}$ are the k exact failure times. Let $R(t_{(i)})$ be the risk set at time $t_{(i)}$. $R(t_{(i)})$ consists of all individuals whose survival times are at least $t_{(i)}$, then the log of the likelihood function is:

$$LL(\beta) = \sum_{i=1}^{k} \sum_{j=1}^{p} \beta_j x_{ji} - \sum_{i=1}^{k} \log \left[\sum_{r \in R(t_{(i)})} \exp \left(\sum_{j=1}^{p} \beta_j x_{ji} \right) \right] \quad (1.11)$$
Suppose that among the survival times t_1, \ldots, t_n there are k distinct times. Let $t_{(1)} < \ldots < t_{(k)}$ be the k distinct failure times (uncensored observations). Let $m_{(i)}$ be the multiplicity of $t_{(i)}$, $m_{(i)} > 1$ if there is more than one observation with $t_{(i)}$, $m_{(i)} = 1$ if there is only one observation with value $t_{(i)}$. Let $R(t_{(i)})$ denote the set of individual at risk at time $t_{(i)}$. Let $r_{(i)}$ be the number of such individuals.

The conditional log-likelihood function is then

$$L_{\ell}(\beta) = \sum_{i=1}^{k} (\beta_i z_{i1} + \ldots + \beta_p z_{ipl}) \cdot \sum_{i=1}^{k} \log \left(\sum_{i \in R(t_{(i)})} \exp(\beta_i z_{i1} + \ldots + \beta_p z_{ipl}) \right)$$

(1.12)

where z_{i1} is the sum of x_{i1}'s over the $m_{(i)}$ individuals failing at $t_{(i)}$, z_{i2} is the sum of x_{i2}'s over the $m_{(i)}$ individuals failing at $t_{(i)}$.

1.3 General Historical Developments

Cox's arguments, particularly the conditional likelihood function (Equation (1.11)) and the logistic model for discrete case, are more intuitive than formal. They have been formalized when no covariates depend on time in terms of a rank-like procedure by Kalbfleisch and Prentice (1973) and in terms of an approximate likelihood by Breslow (1974). The rank-like procedure is not applicable in the case of time-dependent covariate, but an adaptation of Breslow's procedure is possible (Crowley and Hu, 1977). Three particular cases can be identified:

(a) Uncensored Data without Ties. Suppose that t_1, t_2, \ldots, t_n are the survival times of n individuals and x_{1}, \ldots, x_{n} the corresponding covariate values. Let $t_{(1)} < t_{(2)} < t_{(n)}$ be the n survival times rearranged in ascending order of magnitude. The $t_{(1)}, t_{(2)}, \ldots, t_{(n)}$ are called ordered survival times. The ranks corresponding to these order statistics i.e., $(1), (2), \ldots, (n)$ are rank statistics. On the basis of rank statistics, Kalbfleisch and Prentice derive the following marginal likelihood of β from the original distribution of the marginal distribution of the rank.
\[
\left(\beta \sum_{i=1}^{n} x_i \right) / \prod_{i=1}^{n} \left[\sum_{i \in R(t_{ii})} \exp(\beta x_i) \right]
\] (1.13)

(b) Censored Data without Ties. When there are censored observations in the sample, the rank statistics are not completely available. Suppose, for example, that there are four survival times 1, 2, 3, 4. We may order the uncensored times as \(1 < 3 < 4\), however 2+ may be equal to or greater than 3, or may be equal to or greater than 4. Thus, we have only partial information on the ranks. The structure of the model becomes more complicated.

Suppose that \(k\) individuals are observed to failure and the ordered survival times are \(t_{(1)} < t_{(2)} < \ldots < t_{(k)}\) with corresponding covariates \(x_1, x_2, \ldots, x_k\). Suppose further that \(q_i\) individuals with covariates \(x_{i1}, \ldots, x_{iq_i}\) are censored between \(t_{(i)}\) and \(t_{(i+1)}\), where \(t_{(0)} = 0\) and \(t_{(k+1)} = \infty\). The marginal likelihood function in this case is:

\[
L_2(\beta) = \exp \left(\beta \sum_{i=1}^{n} x_i \right) / \prod_{i=1}^{n} \left[\sum_{i \in R(t_{ii})} \exp(\beta x_i) \right]^{t_{(i)}}
\] (1.14)

Where \(R(t_{(i)})\) consists of individuals whose survival times, censored and uncensored, are at least \(t_{(i)}\). That is, \(R(t_{(i)})\) includes the t’s whose subscripts are \((i), i_1, \ldots, i_{q_i}, (i+1), \ldots, (k), k_1, \ldots, k_{q_k}\). The logarithm of the marginal likelihood function in equation (1.13) is exactly the same as Cox’s is Equation (1.11)

(c) Data With Ties. When data include tied observations, Cox’s likelihood is derived by consideration of logistic model for discrete survival time. The likelihood appears to be a statement of inference about regression coefficients in the logistic model rather than in model (1.7). Kalbfleisch and Prentice (1980b) derive a different likelihood to cover this case.

Breslow (1974) suggests another approach to the estimation of \(\beta\) and \(h_0(t)\). It differs from both Kalbfleisch and Prentices arguments and those of Cox in that simultaneous estimation of \(\beta\) and \(h_0(t)\) is made through a joint likelihood function. The underlying survival distribution
is assumed continuous having constant hazard \(h_i = \exp(a_i) \) between each pair \((t_{(i)}, t_{(i+1)})\) of distinct failure times. All censored observations that occur in the interval \((t_{(i)}, t_{(i+1)})\) are assumed to have occurred at \(t_{(i)}\).

Log-likelihood function is

\[
L_3(\beta) = \sum_{i=1}^{k} \left[\beta z_i - m_i \log \sum_{j \in R(t_{(i)})} \exp(\beta x_{ij}) \right]
\] \hspace{1cm} (1.15)

Where \(k \) is the number of distinct failure times. When there are no ties \((m_i = 1 \) for \(i = 1, \ldots, k) \), Equation (1.15) is equivalent to the likelihood set forth by Cox and Kalbfleisch and Prentice. Otherwise, Equation (1.15) is an approximation of Cox's.

Kalbfleisch and Prentice (1979) justified the use of partial-likelihood functions under the assumption of no ties and Breslow (1974 and 1975) tried with the piecewise exponential baseline. Tsiates (1981) gives a proof of the asymptotic normality of \(\hat{\beta} \) (see also Efron, 1977).

On practical level, the piecewise proportional hazards model is familiar to demographers and suitable for demographic analysis given the nature of demographic data (Allison 1982). Demographic analysis typically involves very large data sets, and the information on time is available only in unit interval, such as months or years. It is therefore, easy to group time into a number of segments and to handle efficiently the computation required by very large data sets using the piecewise proportional hazards model.

Moreover, with the piecewise proportional hazard model, it is easy to separate the effects of covariates on the probability and the timing of an event as suggested by Yamaguchi (1995).

We point out that, in a review paper, Kumar and Klefsjo (1994) surveyed the existing literature on the proportional hazard model (PHM). At first, the characteristics of the method are explained and its importance in reliability analysis is presented. Subsequently, methods for estimating parameters, along with the small and large sample properties of the estimators, are briefly discussed. They also
described some possible extensions of the model considered so far and available computer programs and packages for estimating the parameters of these models. However, the article did not cover the developments and applications associated with this model to DEMOGRAPHY.

Teachman and Hayward (1993) in this regard published an excellent article. In this article, basic hazard rate models are surveyed, and survival functions and their relationship to hazard rates are described. Ways in which survival functions can be used to expand the information provided by hazard rates (from relatively simple to more complex hazard rate models) are illustrated. Away from Teachman (1993) article, the reader might be interested in going back in time looking for specific results (both on the theoretical and applied levels). Therefore, the objective of the present paper is to survey the most recent developments and applications contributed thus far to demographic sciences and data analysis.

The historical developments presented above have paved the way towards the following sections.
II. Theoretical Developments

In this section, we present most recent theoretical results, which followed Cox's (1972) model, starting 1982.

1. Andersen and Gill (1982) discussed how the Cox's model can be extended to a model where covariate processes have a proportional effect on the intensity process of a multivariate counting process. They considered the large sample properties of a counting process model with intensity given by:

$$\lambda(t; z) = \lambda_0(t) \exp (\beta_0 z(t)), \quad t \geq 0,$$

where β_0 is a p-vector of unknown regression coefficients.

2. Ciampi and Etezadi (1985) presented a method for testing the proportional hazard (PH) and accelerated failure times (AFT) hypotheses against a general model for the hazard function. They presented the Cox’s model as

$$\lambda(t; z) = g(z)\lambda_0(t),$$

where g is a positive function with $g(0) = 1$, most often the exponential function.

3. Doksum (1987) considered a transformation model when the response variable follows a linear model. The PHM with time-independent covariates of Cox (1975) is a special case of such transformation model, and since partial likelihood methods have proved to be so useful. Therefore, the author investigates proportion of partial likelihood method in the transformation model and introduces a likelihood sampling method to compute partial likelihood and then maximum partial likelihood estimates. Linear hazard models have been
considered legally as alternates to the well-known Cox PHM for the regression analysis of censored survival data. He examines how individual observation influences cumulative hazard estimates.

4. **Etezadi and Ciampi (1987)** developed extended hazard regression (EHR) for censored data. They defined the extended hazard regression model as:

\[\lambda(t; z) = g_1(\alpha, z) \lambda_0(g_2(\beta, z) t), \]

where \(\lambda_0(t) \) is the baseline hazard function.

5. **Dorota and Kjell (1987)** presented some estimates and confidence intervals for median and mean life in the proportional hazard model.

6. **Ghorai (1987)** studied the nonparametric estimation of the mean residual life with censored data under the PHM and obtained some convergence properties and an asymptotic confidence interval for the mean residual life.

7. **Maller (1987)** derived necessary and sufficient conditions for the existence of the maximum-partial likelihood estimation of the regression model associated with Cox PHM.

8. **Efron (1988)** used partial logistic regression techniques to fit parametric survival curves to censored data. These constructions were used to compare two treatments for the cancer study in terms of their estimated hazard rates in an effort to show how some familiar theoretical ideas (logistic regression, hazard rate analysis, and partial likelihood) can be combined to give a simple, insightful analysis of censored data.

9. **Bagai (1989)** proposed a distribution-free test for testing the equality of two failure rates in the competing risk setup. He uses the only information about the course of failure.

12. Yashin (1991) explained how to choose the parametric form of a hazard rate in the existence of partially observed covariates. To this end, he discusses the problem of parameterization of the conditional survival function and the respective hazard. The case of partially observed randomly changing covariates is considered.

13. Lin (1992) designed a computer program, namely, COFCOX, to examine the adequacy of the Cox proportional hazard model. The underlying methodology is based on the comparison of the maximum partial likelihood estimator and a weighted parameter estimator.

14. Barnhart (1994) related a number of multinomial models currently in use for ordinal response data in a unified manner, through the use of generalized logit models, PHM under different parameterization and computed mle for these models.

15. Cheng and Ying (1995) considered a class of semiparametric transformation models, under which an unknown transformation of the survival time is linearly related to the covariates with various completely specified error distributions. This class of regression models includes the proportional hazard models. These transformation models, coupled with the new simple inference procedures, provide many useful alternatives to the Cox regression model in survival analysis. Also they showed that Cox model (1972) can be written as:

\[\log [-\log \{S_x(t)\}] = \lambda(t) + Z^T \beta \]
Where \(\lambda(t) \) is a completely unspecified strictly increasing function, and \(\beta \) is a \(p \times 1 \) vector of unknown parameters.

16. Li, Klein and Moeschberger. (1996) Presented the results of a Monte Carlo study of the size and power of parametric and semi-parametric approaches to influence the covariate effects in survival (time-to-events) models in the presence of model misspecification and an independent censoring mechanism are reported. Basic models employed are a parametric model, where both a baseline distribution and the dependence structure of covariates on the failure times are fully specified (exponential, Weibull, logistic, log normal, and normal regression models are studied), and a semi-parametric approach (due to Cox) in which the baseline distribution is unspecified. Appropriate parametric models have the potential of improving the size and power of the tests, although overall they are not appreciably better than the Cox model. It may be helpful now to take demographers a little bit away from theoretical modeling to applications.
III. Applications of Hazard Models in Demography

A wealth of applications of hazard models appear in the literature. The applications cover many vital demographic areas such as birth intervals, age at marriage, marriage duration, mortality, risk analysis, migration issues, reproductive health, among many other areas. Most of these applications are sequentially (between 1983 and 1998) listed in the following.

1. Foster et al. (1983) in an unpublished paper, applied the hazard model, to the study of female reproductive development. It is demonstrated that use of this method permits more detailed and penetrating findings to be extracted from the kinds of retrospective have only recently become available.

2. Rodriguez (1984) illustrated the application of proportional hazard models or life tables with regression to the analysis of birth intervals, using data from the Colombian National Fertility Survey conducted in 1976 as part of the world Fertility survey. The model describes the family building process as a series of stages where women move progressively for first birth to second birth, and so on, until they reach their completed family size. The author then presents the proportional hazards model, which can be implemented using a software package for log-linear models.

3. Newman and McCulloch (1984) discussed two approaches that economists have taken in analyzing the timing of births. This paper formulates an empirical model appropriate for one of these approaches and demonstrates its usefulness using household survey data from Costa Rica. The hazard rate technique employed in this paper is a natural way of modeling a broad class of problems where the occurrence of an event is uncertain.

4. Trussel and Menken (1985) in a comparative study of the determinants of birth-interval length using hazard - model analysis and worlds Fertility Survey data, showed that use of contraception and
breastfeeding are important but that length of the previous interval also has an effect. This variable may capture information on length and efficacy of contraception use that is not available from direct measures.

5. Shoieb (1985) used the Hazard Model to study the influence of Socio-demographic variables on initial and subsequent childbearing.

6. Ofosu (1986) studied the application of hazard models to birth interval data, with the measurement of recent fertility changes as the main objective. The proportional hazards (PH) model (Cox, 1972) is considered in the framework of nonparametric models, as well as in the form of a Weibull failure model. A generalization to non-PH situations is also attempted using the Weibull distribution as baseline. The results are encouraging for both PH models, but inconclusive for the generalized model.

7. Dewit, et al. (1987) applied the hazard model to study the Covariates of birth spacing patterns in Panama. In this study data from the 1975 Panama World Fertility Survey were used to identify sources of variation in birth spacing in the 2nd birth interval among 3004 women 20-49 years of age. Except for the age group 20-29 years, there was a clear trend toward longer birth intervals with increasing age at 1st union for women who married at age 18 years or above.

8. Anderson et al. (1987) estimated a proportional hazard model for the timing of age at marriage of women in Malaysia. They hypothesize that age at marriage responds significantly to differences in male and female occupations, race, and age. They found considerable empirical support for the relevance of economic variables in determining age at marriage well as evidence of strong differences in marriage patterns across races.

9. Matsushita and Inaba (1987) briefly described the concept of hazard function in comparisons with life tables, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential multiple decrement life table is also introduced as an example of life time data analysis with cause-specific hazard rates.
10. Gage (1987) presented an interesting set of mathematical hazard models of mortality. In his study, a five parameter competing hazard model of the pattern of mortality is described, and methods of fitting it to survivorship, death rate, and age structure data are developed and presented. The methods are then applied to published life table and census data to construct life tables.

11. El Rouby (1990) presented an interesting review paper on lifetime survival function from a demographic perspective and demonstrates the use of hazard models in mortality and pregnancy wastage analysis of the Egyptian data.

12. Kitts (1991) in a hazard model analysis examined inferential of evidence of migration from the port-city of Viana do Castelo, Minho, is considered in). This study is an attempt to analysis the determinants of out - migration of the elite from the Portuguese city of Viana do Castelo [from 1834-1931]. The data used are derived from reconstruction of this electorate using record linkage methods.

13. Teachman and Schollaert (1991) studied direct and indirect effects of religion on birth timing: a decomposition exercise using discrete-time hazard-rate models. The authors found that being Catholic has a variable impact upon 1st-birth timing depending upon the manner in which the dependent variable is measured. Where birth timing is measured as age at 1st birth, Catholices' is slower than of non-Catholics.

14. Shoieb (1991) compared level of fertility in urban and rural Egypt utilizing a Hazard Model.

15. Brecht and Michels (1991) outlined nonparametric techniques for estimating the hazard function and then applied his formulation to the analysis of return migration among guest - workers in West Germany.

16. Ahn and Shariff (1992) considered a hazard model analysis together with data from the Demographic and Health Surveys are used to develop a comparative study of fertility in Togo and Uganda.
17. Guo (1993) used the sibling data to estimate family mortality effects in Guatemala. He pointed out that the parameter estimates yielded by the multivariate hazard model are very similar to those yielded by the standard hazard model. He defined the concept of the familial genetic factors in the light of behavioral genetic theory.

18. Swenson and Thang (1993) used hazard model analysis in a study of the determinants of birth intervals in Vietnam. This study assesses the impact of selected determinants (birth order, birth intervals in Vietnam). Retrospective data on 4172 eligible women aged 15-49 years and 13137 children were obtained from the 1988 Vietnam Demographic and Health Survey. Hazard models were constructed for each birth order for birth orders of two through five and over six.

19. Toulemon (1993) presented a method to calculate adjusted rates from hazard regression parameters and adjusted probabilities from logistic regression parameters. Login hazard regression software produced estimates of instant rates. The odds explain cohabitation and marriage rates for childless women who have never lived before within a couple using data from the French Fertility Survey conducted from January to March 1988.

20. Rodriguez (1994) introduced a highly selective review of statistical issues that arise in the application of hazard models to the analysis of reproductive histories, focusing largely on the need to make explicit provision in the model for unobserved sources of heterogeneity.

22. Kidd (1995) applied a hazard model to access the impact of legislation on the divorce rate with the role of legislation captured via a time-varying covariant.

23. Nair (1996) used Cox’s proportional hazard model to estimate the effects of socio-economic, demographic and proximate variables on birth intervals in Kerala (India).

24. Kravdal (1997) in studying the sociodemographic differentials in the elevated mortality from cancer, used a mixed additive-multiplicative continuous-time hazard model with categorical covariates is suggested. This model is a simple and plausible extension of the multiplicative hazard model demographers are well acquainted with.

24. Shoieb (1998) in a study to determine what Socio-demographic variables affect the onset of childbearing and the pace of subsequent births used a proportional hazard model.

25. Smith and McClean (1998) described and apply selected techniques used to analyze paired hazard rates when event times are right censored and the techniques by looking at mortality patterns husbands and wives.
VI. Conclusion

This paper has tried to introduce a self-contained article on hazard models in Demography. To this end, we have introduced the relevant material which we felt would be just enough for the reader to follow the presentation. An almost complete coverage of published developments, results, and applications of value to demographers followed this. We believe that the contents of this paper could serve as a good start for any researcher interested in linking hazard models to a demographic issue.
Bibliography

University, Series II No. 137.

- Breslow, N. (1972). Contribution To The Discussion On Professor
 Cox's Paper. Journal Of The Royal Statistical
 Society, Series B. 34, 187 – 220.

- (1974). Covariance Analysis Of Censored Survived

- (1975). Analysis Of Survival Data Under The
 Proportional Hazards Model. International
 Statistics Review, 30, 43-54.

- Buckley, J. And James, I. (1979). Linear Regression With

 Hazard Ratio Parameters Based On Correlated
 Failure Time Data. Biometrika, 82, 1, 151-164.

 Models With Censored Data. Biometrika, 82, 4,
 835 – 847.

 The Proportional Hazard And The Accelerated
 Failure Time Hypotheses In The Analysis Of
 Censored Survival Data With Covariates.
 Commun. Statist. Theory And Methods, 14 (3),
 651 – 667.

- Cox, D. (1972). Regression Models In Life Table. Journal Of The

 Statistics And Applied Probability. Chapman And
 Hall.

- Crowley, John And Marie. (1977). Covariance Analysis Of
 Heart Transplant Survival Data, Journal Of The
 357, 27-36.

- Desai, J. (1989). Birth Interval Analysis : Results From A
 Parametric Proportional Hazard Model, University
 Of North Carolina At Chapel Hill, Carolina

