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Abstract

This paper compares the performance of multilevel regression model and
traditional regression mode] of hierarchical data. Multilevel regression has been used to
describe an analytical approach that allows the simultaneous examination of the effects
of group-level and individual-level variables on individual level outcomes. The aim of
this paper is to introduce the multilevel regression model that allow to explicitly
incorporate the hierarchical nature of the data into the analysis, to incorporate variables
measured at different levels of hierarchy, and to examine how regression relationships
vary-across clusters, and compare their performance with traditional regression model
on a hierarchically dataset. The comparison is based on two main criteria; the bias of the
estimated regression coefficients and the size of testing significance of each regression
coefficient. The results suggest that the underestimation of standard error in standard
regression artificially increases the significance of hypothesis tests, and the multilevel —
regression models had a better model fit than standard regression.

A multilevel model of this type is provided by many computer packages,
including MLwin 2.36.

Some key words: Hierarchical data; multilevel linear model; Iterative
generalized least square; three level regression models.

Introduction

The individuals are influenced by the social groups or contexts to which they
belong, and that those groups are in turn influenced by the individuals who make up that
group. The individuals and the social groups are conceptualized as a hierarchical system
of individuals nested within groups, with individuals and groups defined at separate
levels of this hierarchical system. Naturally, such systems can be observed at different
hierarchical levels, and variables may be defined at each level. The research into . the
relationships between variables characterizing individuals and variables characterlzmg
groups are generally referred to as multilevel research (Hox 2010).

Traditional statistical methods ignore the correlation of outcomes within clusters and tend
to underestimate standard errors. This artificially increases the significance of hypothesis
tests, increasing the risk of falsely concluding that significant associations exist.
Additionally, they do not allow one to incorporate characteristics measured at different
levels of the hierarchy (Austin 2001). One assumption of the single-level multiple
regression models are that the measured units are independent. Specifically, we assume
that the residuals are uncorrelated with one another. If data are grouped and we have not

taken account of group effects in our regression model, the independence assumption will
not hold.
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Fit a single-level model and ignore structure substantively you would not measure the
importance of context, Technically, your standard errors would be too small, leading to
incorrect inferences (concluding a high risk of Type I etror). One way to allow for
grouping is to include a set of dummy variables for groups as explanatory variables in
the model. A model with dummy variables for groups is called a fixed effects model
but, there are problems with adopting this approach when the number of groups is large,
If the number of groups is large, there will be a large number of additional parameters to
estimate. The effects of group-level predictors cannot be estimated simultaneously with
group residuals. Fit a single level model with group level predictors unable to
assess the degree of between group variations. Multilevel models enables researchers to
investigate the nature of between group variability, and the effects of group-level
characteristics on individual outcomes, corrects standard errors and estimate the
between-group variance (Raudenbush et al. 2002)

In multilevel research, the data structure in the population is hierarchical, and the
sample data are a sample from this hierarchical population. Thus, in educational
research, the population consists of schools and pupils within these schools, and the
sampling procedure often proceeds in two stages: First, we take a sample of schools,
and next we take a sample of students within each school. Of course, in real research
one may have a convenience sample at either level, or one may decide not to sample
students but to study all available students in the sample of schools. Nevertheless, one
should keep firmly in mind that the central statistical model in multilevel analysis is one
of successive sampling from each level of a hierarchical population (Auda et al. 2012).

We look at the relationship between an outcome or response variable which is
the score achieved by students in an examinatien and a predictor or explanatory variable
obtained by the same students. In the past it would have been necessary to decide
whether to carry out this analysis at school level or at student level. Both of these
single-level analyses are unsatisfactory. In a school-level or aggregate analysis, the

mean exam score be calculated for each school. Ordinary regression would then be used

to estimate a relationship between these aggregate variables. The main problem here is
that it is far from clear how to interpret any relationship found. ‘Any causal
interpretation must include students, and information about these has been discarded. In
practice it is possible to find a wide variety of models, each fitting the data equally well,
but giving widely different estimates. In student-level analysis an average relationship
between the scores would be estimated using data for all students. The variation
between schools could be modeled by incorporating separate terms for each school,
This procedure is inefficient, and inadequate for the purpose of generalization. It is
inefficient because it involves estimating many times more coefficients than the
multilevel procedure; and because it does not treat schools as a random sample it
provides no useful quantification of the variation among schools in the population more
generally. By focusing attention on the levels of hierarchy in the population, multilevel
modeling enables the researcher to understand where and how effects are occurring.

The famous estimation methods for multilevel modeling are namely expectation
maximization algorithm, Fisher scoring, iterative generalized least square algorithms
and the maximum likelihood methods such as full information maximum likelihood or
restricted/residual maximum likelihood. The restricted/residual maximum likelihood
assumes that the distributions of residuals of level-1 and level-2 are normal, and the
sample size is large for both levels; the number of “groups” (level-2 units) and the
group’s size (number of level-1 units per group). In general, a large number of groups
are more important than a large group size or a large number of individuals per group
(Hox 2010).
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Before conducting a multilevel model analysis, a researcher must decide on
several aspects, including which predictors are to be included in the analysis, if any.
Second, the researcher must decide whether parameter values will be fixed or random.

Fixed parameters are composed of a constant over all the groups, whereas a random
parameter has a different value for each of the groups, :

Data: A questionnaire has been administered on a random three-stage cluster sampling
of 1543 students and 43 schools with 83 class of high school in Dakahlia Governorate
where Dakahlia Governorate has 98482 secondary students and 173 schools with 4564
class. The sample has a hierarchical structure. Each student was nested within one and
only one class, and each class was nested within one and only one school. One data set
is the student- level characteristic such as absence rate, intelligent level and GPA in past
semester. The second data set is the class level characteristics such as teacher age,
teacher experience, teacher educational qualification (specialization), teacher salary and
the weakly teaching hours. The last data set is the school level characteristics such as
the existence of appropriate library. the existence of appropriate laboratory and the
existence of appropriate yard.

Methods:

We specify three regression models that will be used in our analysis of grade
point average (GPA). The first is a single level regression model that ignores potential
nesting of students within classes and/or schools, the second is a two — level regression
model that assumes that students are nested within classes, and the third is a three ~
level regression model that assumes that students are nested within classes that are
nested within schools. '

Random intercept model
The simplest multilevel model with a single explanatory variable is
Yii = BotByxit upt ey

The intercept for a given group j is Botuy, ie. it will be higher or lower than the overal]
intercept by an amount uj. A multilevel model can be thought of as consisting of two
components: a fixed part which specifies the relationship between the mean of y and

explanatory variables, PotBix;, and a random part that contains the level 1 and 2

residuals

u;+ éij.

the model is sometimes written in the form of two equations as
Yii = BoitByxi + ¢
By =By +

Random slope model

A random intercept mode! assumes that the relationship between y and x is the
same for each group, l.e. the slope B, is fixed across groups. We can relax this
constraint by allowing the slope to vary randomly across groups, leading to a random
slope '

Yii = BotByxih ugit wy xit e

This can also be written as:
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¥ij = BoitByxi+ €
Boi= £yt ugj
Bij= Byt uy

The random effects ug and uy; are assumed to follow normal distributions with
zero means, variances o2, and 2 respectively, and covariance o,5; . Now the slope of
the average regression line is 3, (sometimes called the grand mean slope) and the slope

of the line for group j is B + u;. The covariance oy, is the covariance between the
group intercepts and slopes.

In the analysis of GPA values we have included the explanatory variables
defined at the lowest level of the hierarchical structure, student characteristics such as
intelligent and gender. One particular benefit of multilevel modeling, however, is the
ability to explore the effects of group-level variables while simultaneously allowing for
the possibility that y may be influenced by unmeasured group factors. Variables defined
at level 2 are often called contextual variables and their effects on an individual’s y -
value are called contextual effects. If contextual effects are of interest, it is particularly
important to use a multilevel modeling approach because the standard errors of
coefficients of level 2 variables may be severely underestimated when a single-level
model is used.

A level 2 explanatory variable can be included in a multilevel model in exactly the same
way as a level 1 variable. For example, if we have a level 1 variable x;;; and a level 2
variable x;; the random intercept mode! becomes

Vi = Bot+ By Xijj+ By xai+uj+eg.

Contextual variables may come from a number of sources. Data may be
collected at level 2, e.g. community surveys in which key figures in the community are
interviewed. Contextual data may also derive from level 1 data that is aggregated to
form level 2 variables. These data may come from an external source e.g. a Census, or
the same source as the level 1 data to be analyzed.

Cross-level thractlons

As in multiple regressions, we can allow for the p0551b111ty that the effect of one
explanatory variable on y depends on the value of another explanatory variable. Recall
that such effects are called interaction effects and are represented in a model by
including the product of the interacting variables as explanatory variables. Interactions
can also be included in a multilevel model and these can be between any pair (or larger
set) of variables, regardless of the level at which they are defined. An interaction
between a level 1 variable and a level 2 variable is known as a cross-level interaction.

A multilevel model for group effects

The simplest possible regression model is a model for the mean of dependent
variable y with no explanatory variables _
| Yijk = Bo + eijic T i

Where yij. is the value of y for the i th student (i=1......1543) in class (j=I...83) in
school (k=1,...,34), B0 is the mean of GPA in all schools, and ej is the ‘residual’ for
the 1 th student, uj the effect of class j, and vy the effect of school k
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In a three level we split the residual into three compaonents, corresponding to the
three levels in the data structure. We denote the group-level residuals, by ik, vi and the
individual residuals by eij. .

The variance partition cocfficient (VPC) measures the proportion of total variance
that is due to differences between groups. In the three levels the residuals split into three
-components, corresponding to the three levels in the data structure:
o)
VEC =t
o+ of + o

The VPC ranges from 0 (no group differences) to 1 (no within-group Differences),
Testing for group effects (LR test)

We can test the nuli hypothesis that there are no group-differences, HO: 0.2=0, by
comparing models in a likelihood ratio test. The likelihood ratio test statistic is
calculated as:

~Suppose mode I is nested within model 1]

2XLlog (L”/L ) =2X(Logly,—Log Ly) ~ ;t’[;'
i

Where: L, and Ly, are the values of the single-level and multilevel models respectively,
q is the number of additional parameters in model II, -2Log L is called the deviance,

LR tests with halved P-value (one tailed P-value) for tests of variance and covariance
parameters is recommended (Snijders et al. 2012)

Results and discussion

All regression models were estimated using the statistical software package
MLwin Release 2.36. The single, two, and three Jevel regression models were all
estimated as linear mixed effects models. Model fit indices, variance parameter, and

The null model is written as;
Zi:jr'€= Boiix + s ‘E"ij + €iit

oy T G ! el g
2~ NLYE )
ZI,'A' = ﬁﬁ(.ﬂkcuns
Boye = TLAW 018 = vy —ay 0,
[rw] MO0 0p- [3\.19.333('-4.9.151}
ug] ¥ Qb 0,= [10.593(4.653)]
;‘[e,,,_k] “ O, Q) o, [2{}1:;21(7.44?)]
]
8. Maglikelihood(IGLS Deviancel = | 2737.043(1 543 of 1543 casas in use)
oteion Resmmniey; s | N o A T M
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The only coefficient in the fixed part of the model is the intercept and this is
estimated to be 71.54, with a standard error or 3.016, Thus, the student score, the mean

student is predicted to score 71.54 out of 100. The z-ratio for this parameter estimate

z =223 = 5379
3.016

The deviance statistic D = 12737, the difference in deviances between two
nested models gives the likelihood ratio test statistic for comparing the fit of the two
models; students are clustered by classrooms and schools,

The school level VPC (variance partition coefficient) is calculated as

VPCr=—" =059

oy +o tol

The class level VPC is calculated as

VPCu=—%___=0.02

2,3
oy toy dag

The student level VPC is calculated as

2
VPCe=T%z—-;=O.39
Gy TOy, *5; )
59% of variation in GPA scores lies between schools, 2% lies within schools between
classes and 39% lies within classes between students. Thus the most variation was in
schools.

Adding student level predictor variables

In student-level analysis, the exploratory analyses extract important variables are
intelligent and sex. We will model the effects of these interventions by including binary
indicator variables for sex, GPA in past semister and intelligent scoré. The model is
written as: ‘

T
m\\;

|2, ~N(XB )
K Zyx = ByCons + U,ﬁ(i?.(O,OiS)lmU;c +-7.93 HOT0T)8ex (115003 F)Deg,,
?'ﬁmjk =86.831(3.841) + Vo T H g+ Co

[rs] ~NO Q) 2 0= [z84.728071168)]
y[,,w] ~NO ) 0= [m.lemm.o?m] ‘ 3
i ‘

few] MO QI Q= [164.08406.07))

<2*oglikelihoodi?GLS Devicice) = 12427, 19601543 of 1543 cases in use)

|_ Bame } » | - | Add Jerm [Estinaien] lantoiesr | Ciear | otuion | Aesponses] Siors j Help |Zonm| 0 - B E

The coefficient on intelligent is 0.302, this effect is highly statistically
significant with a z-ratio of 12.08 with p-value=0.0001. The coefficient on sex is -7.957,
this effect is highly statistically significant with a z-ratio of 11.25 and p-value=0.0001.
The coefficient on degree is 0.1135, this effect is highly statistically significant with a z-
ratio of 3.01 and p-value=0.0019. Adding intelligent, sex and degree reduces the school
level variance and the student level variance student Jevel variance. The decline level
variance in the school level variance shows that there are large differences in students’
GPA between schools.
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The deviance statistic for this model is D = 12427, LR tests (x2=309.96, p < 0.001.

The LR test therefore confirms that the additional predictors significantly improve the
fit of the model.

Adding school level predictor variables

In School-level analysis, the exploratory analyses extract the important
variables, that the presence of appropriate schoo! library and suitable vard, We model
the effects of these two interventions by including binary indicator variables for library
and yard along with their interaction, The model is written as:

Zy =i, Cons + Bygelnty;, + BaijiSexgy, + BaijeDegipe + oy, vard +
Bsy liberary, + Bey liberary, « yard, +uwv, + Uy T €y

,,,,,

il

ALY

e
2o~ M. )

2= FopCons = 0.562(0.023 dnty, + -7 06000, 707 Bex,, = 111500 037)Deg . =~ 26 Tidg 1087 Hibragy, = 25 a57v 800 hard, +
~40L335( 13045 )library.yard,,

Do = A1BASEIID) vy by g,

S’|:vw] ~NO, Q) 0,= 235.068(59.100)]
[« ) "N Q0= [1(:,1)(),1(4.051)]

[eag:»] SN0, ) n,- [164.“0(5»0?1)]

T
. -2Maglikelihood(IGLS Deviance) = 124 17.790(1543 of 1543 cases in use)

'Uam. ' S : Ad I’m"”j e | Clenr Hou—l-(;n Iﬂo||;::;-u:7n;i;r: i Help -Zn;;n;{ 190 ;" -

We can perforrﬁ an LR test to confirm that the additional predictors significantly
improve the fit of the model. The (¥2 = 9.29, p < 0.001). The LR tost therefore
confirms that the additional predictors significantly improve the fit of the model. |

Adding class level variable

The implementation of teacher characteristics such as the experience and
specialization was carried out at the classroom level. The classroom level variance
provides a measure of the extent to which classrooms vary in this respect. The extents to
which classrooms vary across four conditions:

- Neither experience nor Specialization
- Specialization only

- Experience only

- Both experience and Specialization

We can explore this hypothesis by estimating separate classroom level variances
for each of the four conditions, The four sets of classroom effects U7jicy UBjk, Ugjk and
U1ojk are modeled as independent.

The model is written as:
ijk=8o=‘j;{ Cons + By pdntyy, + BaijeSexiy, + BaijeDegi + By yard +

ﬁs-‘k Ziberaf‘}lk + /35;{ iibe-r‘a'r}.rk % }’ﬂ‘r'd-k + v, -+ 'Lt?jk'neithe*r‘ 3 Uy OXD,, D?‘Ll}’ +
Ugy Spey, only + Uyp/: 8XP, and spe, + 8 ix
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v, ~N(0,07)

Uy jn 0 Tu7
2
g | oy {0} | 0 ‘s
r 2
U, ik 0 0 0 Tq
Uik 0 0 0 0 ol
€ x~N (0,0}
g e | s
Z‘_,k ~ N{YE ) -_----.-.- e e

2, = BouCons + 0.301{0.024) ity + -7 643(6.343)Sex,, = 0 115(0.0371Deg,, » 20.786¢11.1 243library, — 23.636(9. 768 )yard, + 383841 2,065 ibrary.yard,
+ tbothy, + u g neithen, + gREXR_ONlYy + 1 g spec_only,
Bre =43.204(7.999) + vy + €0,

[{.-M] TN QD F = [23.249(34.290)]

W 1L117(0.933)

N S R L 16.60%13.719)

o 0 0 183730 13.900)

e 0 0 0 7.666(0.275)
[em] ~NO, Q) 1 0= [154.454(5.937)]

-2%oglikelihaod(IGLS Deviance) = 12404,705(1543 of 1543 cases in use)

Hama D+ 5 - Adderm Estimales: Hooinem © Clasr o Mollon | Reapanass: $iora | Help IZunm‘,‘W -

o R llarstien 358 ot || Equatiors

An LR test comparing this model to one which assumes a constant class level
variance across the four conditions strongly rejected the constant model
(x* =1334 ,P=0009) Thus we find there is evidence that class level
heterogeneity varies across the study condition. '

Discussion:

The availability of a practical method for fitting multilevel models with many
random error terms raises a number of important considerations which are counterparts
and extensions to those arising in ordinary least squares model. Thus, for example,
decisions are required concerning which error parameters should be included; whether
there is a prior order in which they should be introduced; how one interprets the
estimates; the use of residuals at different levels and so forth. There is also the general
issue of how to deal with coefficients which may be treated either as fixed or random, It
is to be hoped that extensive practical use of these models will provide the experience
for forming sound judgments on these issues.

In this search, we have used three different model specifications to analyze
GPA. One specification was the single level regression model that is typically used to
analyze GPA, and the other two were multilevel regression models that recognized the
hierarchical nature of the data. The two-level regression model recognized the nesting
of students within classes, and the three-level regression model considered students as
nested within classes and classes as nested within school.

The multilevel regression models were estimated by Iterative Generalized Least
Square (IGLS). We found that multilevel regression models, in this case the three-level
regression model, should be considered in analysis of GPA, as indicated by goodness of
fit statistics (Max Log L).
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Table I: Regression model results: p

model fit indices

arameters estimates, variance parameters and

Ingzrcept Single-level Twao-level Three-level
nly
Parameter estimates
Fixed Part Coef.(s.e.) Coef.(s.e.) Coef.(s.¢c.) Coef.(s.e.)
Intercept’ 71.549(3.016) 56.83(3.84) 41.84(8.15) 43.204(7.99)
IQ 0.115(0.037) | 0.1 1(0.03) 0.115(0.037)
Int 0.302(0.025) 0.302(0.025) 0.301(0.024)
Sex -7.95(0.707) ~7.96(0.707) -7.64(0.343)
Library 26.79(11.05) 24.78(11.12)
Yard 25.45(9.8) 23.68(9.765)
Library*Yard 40.33 ('1 3.04) -38.38(13.06)
Neither -3.586(2.130)
Spec_only 000(0.000)
Exp _only 0.653(1.956)
Both 1.210(1.184)
Variance Parameters
var(ey) | 201.32(7.44) 164.08(6.07) | 164.11(6.07) 164.45(5.98)
var (“;k ) 10.69(4.65) 10.14(4.07) 10.004(4.06) 19.52(4.68)
) 1831146%)
U351
_ TEHRIS Iy
var(y,) 299.38(74.94) 284.72(71.16) 235.06(59.1) 238.24(34.29)
Model fit indices ,
Deviance 12737.04 12427.19 12417.79 12404.7

|

Table 1 presents the
this table, the intercept-

parameter estimates and standard error for al] models, In

only model estimates the intercept as 71.54, which is simply the

average across all schools, classes and students. The variance of the student level
: errors

residual

var(e, ) is estimated as 201.32. The variance of the class lev
is estimated
estimated as 29

and 61% of

The second model includes student

el residual errors va
as 10.69. The variance of the school level residual errors var
9.38. All parameter estimates are sj
measure homogeneity of the observed res
Pe =059 and p,, = 0,61 thus, 59% o

the variance of the GPA is at class and school level,

variables. The regression coefficients for all

of the student leve] residual errors var(
 class level residual errors var(w, ) is

level residual errors var(v,) is estimat
of school characteristic by including
library and suitable yard along with thei

gender, degree and intelli

r(‘-t}k)
_ (vi) is
gnificant. The interclass correlation
ponses within a given cluster which equal
f the variance of the GPA is at school level

gent as explanatory

three variables are significant, The variance
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. The variance of the student level residual errors var(e“k) is estimated as
164.11. The variance of the class level residual errors var(w,) is estimated as 10.004.
The variance of the school level residual errors var(vy ] is estimated as 235.06.

The fourth model includes the effect of class characteristic by including four

- binary variables for teacher characteristics. The variance of the student level residual

errors var(e”k) is estimated as 164.45. The variance of the class level residual errors

var(uy) is estimated  as[10.92 1831 2153 7.65 ] The variance of the school
level residual errors var(v,)is estimated as 238.24, '

Table 2: Comparison of ordinary least square Regression and Three multilevel
model: parameters estimates, parameters variance and model fit indices

' Three-level Or(linm}.f leas't square
Estimation
- Parameter estimates
Fixed Part Coef.(s.e.) Coef.(s.e.)
Intercept 43.204(7.99) 59.58(2.98)
Deg. 0.115(0.037) 0.073(0.045)
Int 0.301(0.024) ~0.29(0.03)
Sex =7,64(0.343) -8.36(0.87)
Library 24.78(11.12) 13.24(1.96)
Yard 23.68(9.765) 9.09(1.65) _
Library*Yard -38.38(13.06) -16.97(2.329) -
Neither -3.586(2.130) -27.50(1.44)
Spec_only 000(0.000) 000¢0.000)
Exp_only 0.653(1.956) -7.12(1.40)
Both 1.210(1.184) 2.47(1.13)
Parameters Variance
uar(eﬁ-k} 164.45(5.98)
var(iu,) [16.9 183 21.5 7.6
var(v,) 238.24(34.29)
Deviance 12404.7

Student level results ¢lose to multilevel, but estimates are more similar than standard
error, underestimation of standard errors by ordinary regression analysis is expected
science assumption of independence of observation is violated..

Students hbmogeneous within classes than schools where students within classes model,
VPC=0.02 and students within school model, VPC=0.59.

Based on 3-level model, Explained variance respectively:

Level-1 RZ=1- 2

2

o

2 [
Level-2 R7 =1 — 22
- “uo

Level- 3 RZ =122
&,
0

Subscript 0 refers to a model with no covariates (null model), subscript P refers to a
model with P covartates (full model).
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Table 3: Explained variance in three multilevel model

Level Variance Null model Full model R?
Student 8} 201.32 164.45 18%
Class & 10.69 o 6%
School gl 299.38 238.24 20%

Table (4) contains model fit indices, or goodness-of-fit slatistics, that allow an
analyst to choose the "best" model among various candidate models. We used standard
regression and three level regression model fit indices to determine which was the best
one to use in our analyses of hierarchical data. The first model fit index was the value of
the maximized log likelihood function (Max Log L), where higher (more positive)
values of this index indicated a better model fit, We also used two penalized likelihood
criterion, Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information
Criterion (BIC), to compare alternative models (Burnham and Anderson2004). A
smaller value of AIC and BIC indicate a better model fit. Comparing the two model fit
indices for the regression models, it was clear that the multilevel regression models had
a better model fit than standard regression, as the multilevel regression models had
higher Max Log L and smaller AIC and BIC. This result suggested that accounting for
the hierarchical structure of the data resulted in a better goodness-of-fit.

Table 4;: Model Fit Indices

Model Fit Indices
Multilevel Standard regression
regression
MAX LogL | -6202 -6511.6
AlIC 12536.1 13041
BIC 12413.5 13089
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