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I. INTRODUCTION AND PURPOSE

In recent years the important role education plays in the

~ developmental process has been recognized by many developing coun-
tries as indicated by the substantial increases in resource alloca-
ted to the education sector. Concurrentiy, national and interna-
tional pianning agencies have been giving serious attention to
educational modelling with an attempt to incorporate the educafion
sector 1nto general socio-economic plannlng. ‘In this paper we focus
on some specific aspects in the use of educational flow models, in
particular, how to deal with uncertalnty regardlng the values of
some parameters and/or-of some—exogenous varlables of a specified

model.

Consider now the following tyrical stages in the educational
planning process as described by Hooksr (19Tk, p.83) and Werdelin
(1972):

a) The present situation is analysed; past and present trends of

development are studies and the future situation during 2

number of years is forecast;

b) targets for the future situation are assisted in various
- fields;

c)imeans of arriving at the targets are suggested; tke feasibi-

lity of the steps is tested;

d) a system of follow=up is devised to check the development
during the planning period and to allow new action whenever
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necessary. This process is continuous and iterative.

While the different planning approaches are mainly concerned with
stage (b) above--that is, the target setfing stage and differ in
their conceptual basis in this regard--educational flow models are
concerned with the internal dynamics of the educational system's
supply. Thus, they are clearly indispensible and necessary tools
in implementing the four stages mentioned above, especially stage
(a). By estimating and tracing the flow of students and teachers
throughouf the ednchional system, educational flow model help to
analyse and forecast educational supply. Stone (1965, 1966, 1968),
Smith and Armitage (1967) and Alper, Armitage and Smith (1967) ill-
ustrate the development of computablé student models. OECS (1970)
and UNESCO (1966) give much more comprehensive flow models with

applications.

Algebraically, a system flow may be.sumﬁarized as follows in

a matrix format: -

X(n) = A(n-1) X(n-I) + B(n-1) (1)
Where n : Ltime ' . ==

X(n) : vector of dimension (rx1) where r is the number
of states in the system (grades, for example).
The i®® o1ement, x1(n), is the number of
students or teachers in state (i) at time n
(the i%P state variable).

A(n) : the transition martix of the system of.order

(rxr). The elements of this matrix are the
transition coefficients that describe the move-
ment within and out of the system. -Of course
not all transitions between the various states
are feasible. This implies that many of the



elements of the transition matrix are zeros

B(n) : A (rxl) vector of new entrants into the system

between (n) and (n+l1).

The matrix equation (l)4represents the basic model of flow and supply

dynamics and it is now the generally accepted format in most supply
forecasting (Davis, 197k).

For the purpose of this paper, educational modelling can be.
divided into two stages. The first has to do with Building a model
that is appropriate for the policy questions being examined and the
second has to do with developing appfopriate current and future values
of the parameters and/or exogenous variables. It is this second stage
that consfitutes the frame of reference for the discussioh and metho-

ology of this paper.

It is easy to see that setting aside the possibilit& that the
structure of the flow model is a bad one, the validify of the outcome
will depend largely on the various ziven to the parameters and‘exoge-
nous variables. But, since the parameters setting is carried out
exogenously, the flow model by itsel? cannot produce realistic fore-
casts. Special attention, therefdre, should be given to possible
variations in the values of exogenous variables and parameters estima-
ted in the paramefefs setting stage. These estimates are not necess—
arily certain. They are usuallj aécomp&ined by a range of estimation
errors. This_uncertainty is,compunded by the accumulation of such
errors when the values of the exogenous variables are projected into
the future. On statistical grounds the estimated values of the exo-

genous variable are subject to some given deviations.

Whatever the approach to educational planning (social demand,
manpower requirements, etc.), the objective of the plan is usually

transformed to quantitative targets to be reached over a given period
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of time (the planning period). We will consider the target which is
expressed in terms of desired number and distribution of students

and/or teachers in different educational levels.

To choose between the different possible alternatives that can
be generated using the educational flow models of how these targets
are to be achieved, it is assumed that the planner will choose that
oné which optimizés a given objJective function. This process is
"bound to be affected by the possible variations of the values of
parameters and/or exogenous variables discussed above. The purpose
of this paper is to develop some analytical and operational.tools

that can be used to provide an answer to the following question:

How does a given change in the value of some or all parameters
and/or exogenbus variables in educational flow models (as represent-
ed by Eq. (1) ) affect the final results of the optimization processf

Tt must be emphasized that the pﬁ%égggmof these tools is not
to eliminate the elements of uncertaipty regarding the tfue values
of those parameters and/or exogenous variables. It rather azzgmzps
to analyse systematically systematically the likely COnseéﬁeﬁﬁés of
their presence and in this sense reduces the impact of uncertainty

in planning.

II. THE PROBLEM

Within the context of the above discussion and to state the
problem in a more generel form, let the educational flow model be

represented by the following set of equations:

X = £(x(o), P, 4, n) (2)
where X is the vector of state variables, P i1s a vector containing

the model's parameters, d is a vector containing the exogenous (or
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input) variables,'gﬁo) is the initial condition vector, and u is a
vector of policy or decision variablesg Those last variables are

. assumed not to befgeneratgd‘bYLtheiﬁodéi; but theyican_beipafémeters
and/or exogenous varaibles which aféréﬁbject to infiuénéé‘oriménipu-

lation by the planners.

We also add the set of equations:

Y = g(x) ' (3)
where Y is the vector of output variables. Of course, the function
g could be the identify function if the output is the levels of the
state variables themselves. However, if we are interested in some
and not all state variables, their proportional distribution, etc.,

then Eq. (3) bas to be augmented to the model.

Let the planning period be N years. To carry out a simulation
run over this period, the planner has to supply a sequence of values
for the vectors P, d, and u for thé entire planﬁing periods in addi-
tion to the initial conditions. The simulation then produces an

output trajectory (Y).

Let (Y) be the desired trajectory of output variables (which
are determined in the target setting state mentioned abovey.Because
of political and economic-constraiﬁts or beéause of the importance
of some policy ¥wariables by themseleves (i.e., not only because of
their effect on output variables), e.g., in the case of the desire
to decrease the wastage in education by reducting the dropout rate
~ or when there is an attempt to improve the quality of education by
increasing the teagher-student radio, ete., we will assume that

there is a similar desired path for policy variables (i) to which

the planner hopes to stay close.
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Assuming that the planner has chosen the following quadratic

functicn to represent the preference function mentioned above:

J(z) = 2' wz : (%)

where Z= Y-

[

, of order (n, x ng) %= I3
L1-1u

ng = (ml x N), n, = (m2 x N), where my, m; Are the number of out-
put and policy variables defined for each period of time. The
weighting matrix is a diagonal matrix or order (nl + ng) x (nl + n2)
with weights assumed to reflect the priorities of the planner for
the importance of a group of variables versus the others. The
planner is interested in choosing the time path of the policy

variablie which minimizes this quadratic function.

The planner's concern now, given the problem just defined, is
that he (or she) is hot certain about the value taken by certain
numbers in the model (parameters and/or predicted exogenous variables).
Regardless of the role these numbers play in the modei, they will be

called error terms and will be put together in a vector € with ns

components. Letfé;be the nominal value assigned to the ith Compo-i

nent of the vector € during simulation and optimization. Based on
experience or by examining past data, we assume that the uncertain
knowledge of the component €; can be expressed by stating that
could take any value within the range e;i‘ei.‘ This range will be
referred to as the range of uncertainty. Given a similar statement
for each component of the vector € , such statements will generate a
set that surrounds the nominal vector € and will contain all the
possible joint realisations of the different components. This set

7 will be referred to as the error set E.



The question whxch was posed in the previous section can now

be broken dowa intc two questions:

1) If the opﬁimum values were calculated using the nominal
values & , how much would other possible values of € change

the optimum?

2) What is the image of the set E in policy space and what are

its characteristics?

In this paper an attempt is made to answer these two questions.

III. METHODOLOGY

Two groups of measures from the basis for the analysis. The
first group depends on the particulér relationships and definitions
specified by the two equations (2) and (3) together with the numeri-
cal specifications of the parameteré and initial condition. These
specifications will be referred to collectively as sysfem structure.
The second group of measures depends oﬁ some measures of the first
group together with the range of uncertainty assumed for the compo-

nents of the vector €.

A. Measures that Depend on System Structure

If all the information contianed (or required) in Eq. (2) is
known and fixed except regarding the required values of policy
variables and the uncertain values in € , then the output variables

Y can be considered as a function of both u and ¢ :

Y =¥(u, &) | (5)
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The set of equations given by (5) can be nonlinear equations, and,
depending on the definition of output variables and the relation-
ship assumed in the model, it may even be difficult to write the
R.H.S. of this equation in explicit form. However, for a small
enough change, 6u to u and§€ to € , a linear relationship is assumed

-

to hold between change $§Y and $u and $¢€ . Thus:
S_Y_=Sl Su + 825§ (6)

with the matrices S, and S, has obvious interpretation.

I s
Define S = Sl
u ———

I 0

where I is a unit matrix of‘order (nl b'e nl) and 0 is a zero matrix

of ordery(n2 i"ﬁBBJ Thus we have

62 =S du+ 5 5¢ (7)

The optimization problem here is one of the so-called un-
constrained optimization problems and can be solved using one of
the algorithms designed for this class of problems, particularly
when the objective function is a sum of squares of functions, e.g.

Gauss-llewton or its modified versions (see Murray, 1972).

All these algorithms are iterative and they calculate a sequ-

ence of points }l(l) 5 3(2) 2esee, Starting from initial point y_(o),

that should converge to a point u* that minimizes the objective

function. These algorithms calculate g(lﬂ‘) from linear approxzima-

tion to the function Z (using our notation), this approximation
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being chosen so that they are goocd near u . In our case the
amount of increment in the funcition Z will be provided by equation

(7).

In these algorithms the amount of correction (éu)to the
vector u during the iteration is the one which minimizes the objec-

tive. function J(Z + &Z) which, using 2quation (7), is now given by:

fu = - (s'ws)~t s'w(z + _SESE) (8)
uu u -
_1 o
Defining §€=€ - € , we could compue the nominal optimal policy
: %
vector, which will be demoted by u , bY¥ letting 6€= 0 (i.e.,
assuming there is no uncertainty regarding the value of the compo-
nents of the vector € ) with the new iteration beginning with the

new value of the vector u c__:omputed by:

Su

u = u .
. .. - - L hew -old —

Convergence is assumed. when Su is small enough. From the nominal
optimum 11__;” the -Fhange in u*due to a given change 6€ is from equa-
tion (8): .

W(HE ) = uw* +ou(SE) (9)

au (8 € ) -(sl'lwfzsm)'_1 8!Ws,= —C § § = -Bo (10)

€

The effect of specific deviations in the error terms on the
variables of interest in-the model can be examined through two
measures. The first measure comes from the matrix Sg (or S,) which
is the matrix of the sensitivity coefficients (.:__-g.) . The columns
of this matrix give the individual effect of a unit deviation in

the error terms on the target variables around their optimum values
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and it is easily constructed by simulating with the nominal optimum
policy (u ) and small change in turn in what constitutes the error
terms €, > z»"~-'ﬁ=€m3. The second measure comes from the matrix

B defined in equation (10). The (ith) column of this matrix gives

the shift in the optimum policy resulting from a unit deviation in
th : ;
the (i") error term.

B, Measures that Depend on System Strucutre and the Range of

Uncertainty

We notice that altough matrix B gives the effect of deviation
in error terms on policy variables, it only gives'the effect of each
one separately. It does not provide Joint effects. It is undoubtedly
more interesting and more important to planners to examine the joint
effect of-a specific combination of deviations versus the Jjoint effect
of a differen@_gombination: In ad@itipn, when comparing the effect
of different "groups" of erpvors a more accurate and complete compari-

son is the one which compares both the-joint-and the individual effects
A first step here is to defire the set E.

From among the possible definintions of the set -E-—we will conside
only one, namely the ellipsoidal set E:

:[e_:sc'v'lsgsl] (11)

E
Where . Se ’e_a

and V is a4 diagonal matrix of order (n3 x n3) with eiQ) as its ith
diagonal element. Inclusion of off diagonal terms in V gives a

rotated ellipsoid and interacting errors.

Assuming that all possible combinations of the component of
the vector € are equally likely to occur is equivalent to assuming

that the vector € 1is uniformly distributed éver the set E .2 This
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(U]

leads us to the concept of eiipsoid of concentration of € .

Accordingly, the density defined by & uniform distribution over

the interior of the ellipsoid:

i

5ev Ts€=mn,+2

3 (12)

has a mean vector ecual to € 2nd a covariance matrix equal to V.

The linear relationship defined by equetion (10) defines an
.updating vector AW(S€)for each € (and hence for each §€=€ ~&)
in the set E now defined by: '

~

: -1 =
Bileie-EVgn Y (e-9stlay

From equation (10) another set containing all :bhe possible

updated vectors g* ¢an be defined as follows:

U: (u*: =3 +OL(BE)3 € mE) (14)

The policy vector g* is now a randmm vector since the updating
vector AU(S€) is now a function of the random deviations§€ through

s L :
equation (10). Thus u is & n, -components random vector with:

E(u") = 5 (15) _
Covlu’) = Efed® - & ) (a" - ') 1= B@uan')= 1 gy (16)
ol n3 +2

. ] . E *
It then follows_ that the ellipsoid of concentration of u is
given by:

au' (Cov(ay) )-lAE = n1.+ 2
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au' | BVB' e Au=n +2
n3 +2-

u' [ o, +2 o

A= |1 "% BVB' 1A9_=1 (17)
n, +2
3

This ellipsoid encloses all possible combinations of the components
of the vector Hf which correspond to the possible combinations of

- components of the deviation vector SE ; both combination are uni=-
formly distributed over the interior of thz corresponding ellipsoid.

i

Some basic results from linear algebra  can be used to chara-

cterize the set U given by:

3 -1
—H—+—{u :Au' V, Ausl;€ in E ) (18)
where VvV, = n. +2
1 _1- . BVB'.
n3 +2

The dimension of the set U is given by the rank of the matrix
BVB' which has the same rank as the matrix B defined in equation (10)
Thus:

Dim (U) = rank (B) = min (rank (su), rank (W), rank (S¢ ))
st(%jng.
U may be confined to a subspace of lower dimension than 0, if there

are fewer than n, errors, for example.

The shape of U can be easily determined from the directions

and lengths of the axes of the ellipsoid

L
au' Vi ausl
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If U is of lovwer dimension than “1’ EONe eigenvalues are zeros
and the nonzero axes are an othonormal basis for U. This means thatl
every vector in the sxet U (i.e.., every updated poliey vector) can be

xpressed as linezr combination of them. Thus the eigenvalues and

)

eigenvectors give the length and direction of change within the set

!

U.

The measures intorduced to aharacterize set U help to analyse
the Joint effect of different errors. These messures are the eigen-
values and eigenvectors of the matrix Vi defined in equation (18)
showing the directions and lengths of major patiteins of veriation
within the set' U, snd the variance covariance matrix of the vector
AN, Cov(an), given by equation (16).

IV. FINDINGS : ILLUSTRATIVE EXPERIMENTS

- To illustrate the concepts discussed in the previous sections,
five experiments (a-e) were performed. In al) experiments the main
interest was to see how the different meabures aimed at examining
and quantifying the dynamie effects of errors refleet the busic
differences between the experiments. In all experiments the same
definintion of policy variasbles was used, The experiments (a), (b)
ond (e) ore the same respect except thut they differ in what con-
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stitutes the source of uncertainty, i.e., the components of the
vector . The last two experiments (d) and (e) have the same
source of uncertainty as experiment (b), but they differ from the
rest of the experiments and between themselves in their definition

of target (output) variables.

The model used in all the experiments to specify the relation-
ships between the state variables is a simple 2-sector model of

teacher supply:

+1- =
Xl(g 1 Xl(n)al+gl(n) 2,
X (n+1) = X_(n)a +X (n)a +g (n)a
~ 2" 53 1 3 ge 5
where Xl(n) : number of teachers of type (1) at time (n)

Xz(n) : number of teachers of type (2) at time (n)

g.(n) : number of graduates of teacher training college

for type (1) at time (n).

62(n) : number of graduates of teacher training college

for type (2) at time (n)

a) : proportion of type (1) graduates who enter the

teaching profession,

&l,a3 : retention ratios for type (1) and type (2)
respectively '
a : proportion of type (1) teachers who become type

(2) teachers.

Those relationships provide the supply dynamic of the national
teachers only. “We assume that there are a number of foreign

teachers in the system at the beginning of the planning interval
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whose future survivors in the system were estimated exogenously.
If we assume further that the planner is interested in.the totél
number of teachers available in the system (nationals plus forei-
gner) at each year, then the output variable is defined to be this
tital. The desired yearly values for this output variable are, of
course, the total annual requirements for teachers in the system.
Those total requirements were assumed to be computed exogenously
and given to the planner as fixed in all experiments (but not

" necessarily constant). In computations, the variables that appear
in the objective function were defined as to have a desired value
of zero;s Thus the "modified’target varibale was defined as

follows for each time period:

Y(n) =[ I(n) - D(n) ] » (19)

D(n) : total requirements of teachers at time (n).

Two policy variables were defined for each time period. Taking

the last observation intoc account, these-were:

. _ a.(n) o
Bl =75 - 1.035 (20)

as(n—l)

amdu(a) = I@) o (21)

g(n)

where as(n) : the value of the proportion of type (2) graduates
who enter the teaching profession at time (n) with

25(0) = &g



I(n) : mumber of foreign teachers imported at time {(n)
g(n) : total number of graduates o both types who'enter

‘the teacéhing profession at time (n).

Thus, equstion (20) means that the first varisble deemed control-
lgble by the planner is the proportion (as) with a2 dasirsble sannusl
rate of increase of .035. In equation (21) it wes assumed that one
objective of the planner is to control the number of foreign teach-
ers coming to the system at time (n) such that it may not exceed
one-third (or a little less) of the total number of the nationsls

who enter the system at time (n).

The tctal number of teachers defined in quation (19), there-

fore, has to include those foreign teachers and their survivors6
in the -system-as-well. Thus, the totsl number of teachers is defin-

ed as follows:

T(n) = Xi(n) + X, (n) +.I0(ﬁ) + I(n) + is(n) (22)

vhere Io(n) : the number of foreign teachers who were.in the. systen
et the beginning of the planning interval and who are
still in it at time (n)

I(n) : the number of foreign teachers who come to the system
during time (n)
Is(n) : the number of foreign teachers who came to the system

before time (n) and who are still available at time
(n).

The length of the planning interval (N) was assumed to be 10
years. But, since equations (20), (21), and (22) specify that values
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for the target variables and for each of the two policy variables
are to be determined -each year, ﬁhe total number of target vari-
ables and policy variables wefe.;o and 20 respectively in each

experiment .

The aim of the optimization is to ﬁinimize a weighted sum of

squares of all/30 variables:

30 5 10 20

2
J= L w, z.= I wy.+ I W, u, . (23)
5=1 i i i=1 ivi 1=1 i+l10

The weights were chosen somewhat arbitrarily as follows:

w, =1,i=1, 10

.

=1 x10°, j =11, 13, 15,...., 19 ( those asso-

)
!

" ciated with the first policy varibale)

wy = 1% 102, § = 12,1h4,....., 20 (those associated

- with the second policy variable).

It is to be emphasized that our mein concern here is not the optimum
solution that satisfies equation (23) (referred to hereafter as the
nominal optimum) per se, but in "using" it as a base-point for the

dynamic sensitivity analysis.

In the fourth experiment (d) the planner was assumed to be
concerned with the path of the first differences (instead of the
levels) of the target variables defined by equation (20). Thus, in

this experiment equation (20) was replaced by the following equation:

Y(n) = ([T(n) - T(n-1)] - (D(n) - D(n-1J] (24)
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Apart from this change, experiment (d) is similar to experiment (b)

including the definitién of the error terms.

In the last experiment (e) the definition of target variable
changed again, this time to a nonlinear function of the state vari-
ables. It was assumed that the planner is interested only in.the
proportional distribution of the state variables and he would like
to see this distribution follow a given path. The targét variable
now has the form:

Y(n) = < - ¢(n) (25)
ﬁ':L(n) + X2(n)

A . : o
where ’fon) = Xl(n)'+ I(n) (26)
and Cc(n) : desired path of the ration of number of teachers
type (1) to totel teachers with C(0) = .82 and
c(10) = .60

Thus it was assumed that the foreign teachers who would come to the
system at time (n) would be of type (1). This new definition nec
necessitates .a change in the weights associated with the target

variables which now become:
ﬁi =1 x 103, 1 = 1,2....10.

The initial conditions and the numerical values of the parameters

are as follows:

X,(0) = 1koo, X,(0) = 300, &; = -85, a, =.05, a;=.T5,
1

ah = -85, as = .65, gl(o) = 3503 and 82(0) = 60
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The error terms and their assumed ranges in the different experi--

ments are as follows:

Experiment Error Term Nominal Value Range (+e)
(a) x,(0), xl(OJ 300, 1400 + 16, + 12k
(b) 2 a3 55 TS +.05, +.075
(c) By 0 8y | .85, .75  4.05, +.075
() as (b) as (b) as (b)
(e) as (b) as (b) as (b)

A final and important observation is in order. From the
assumption of the model and from the definition of both policy
variables and target variables, it was implicitly assumed that a
decision taken at time (n) will affect only the state and target
variables at time (k) when k »n. This assumption, which is a

natural one, has important implications.
Recall equation (6) :
=S fu + S §€
§y=56u+spe

which gives the first order effect of change in policy variable

(6u) and in error terms (§€ ) on target variable (87 ).

The matrix 51 is of order (10x20) since we have one target

variable and two policy variables for each year. The assumption

2

mentioned above implies that Sl can be partitioned into 10 sub-

matrices all of order (1x2) as follows:



|
[Xe]

s
!

S 0 0 0

1,1 |

S S 0 0

2,1 2,2
g = S S g 0 | (27)
1 3,1 3,2 3,3 :

S -8 S S

10,1 10,2 10,3 10,10

The diagonal blocks (S , S ,...) specify the partial derivatives

1 2 : .
of the target variable with respect to policy variables in the same per
period, and the submatrices below and to the left of these (S

b

831...) specify the partial derivatives of target variable with
respect to policy variables in earlier periods. This particular
form of this matrix has important implications which will be dis-

cussed later.

V. CONCLUSION

In this paper an attempt was made to examine and analyse the
effect of errors on the values taken by some variables in education-
al planning models . Five experiments were attempted; the results

lead to the following observations:

a) In this type of analysis the numerical specifications of
the parameters and the initial conditions in the model play the
dominant role in determining the relative importance (in terms of
greater effect) of one error term versus another. Figure 1 shows
the individual effect of a 5% change in the error terms on the target

variable in experiments (b) and (c¢), namely, al, and a). From

337
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the figure it is clear that a change in a (associzted with the’
larger of the tvn state variables) has the largest effect on the
target warisbles followed by ah and a3.

b) The effect of a deviation in an error term on output
variables depends totally on how these variables are defined as
functions of the state variables. The reason is that the observed
change in output variables is a "net" result of two effects. .The
first effect ié the effect of change in the error terms on the
- state vafidbles and the second is the effect of the change in
the state variables on the output variables. If those two changes
move in ths same direction8 (i.e., an increase [decrease] in state
variables which results finally in an increase decrease in out-
put variables), the net result on output variables will be ampli-.
fied;m_I} %ﬂe two changes move in apposite dlrectlons9, they may
balance out each other and the net effect on_output variables may

be smaller than expected.

c) All the measures intordiuced are functions of twe matrices
(which are measures by themselves): the matrix Se_ which measures
the sensitivity of output variables to individual deviations in
the error terms, and matrix B which measures the effect of these
deviations on the policy variaﬁles. To compare the effect on
target variables of different magnitude, the elements of the
matrix S, were normalized by dividing them by the optimal value
of the corresponding target variable. Flgure 2 shows the norma-
lized sensit1v1ty coefficient in experiments (b) and (e). This
figure confirms the significance of observations (a) and (b) above.
The relative importance of a, versus a in experiment (b) completely
reversed in experiment (e). Thus a unit deviation in a_ will have

more effect-(relative to the optimum) than a corresponding devia-
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tion in a . The reason, cf. equation (25), is that a change in a
will affect the corresponding state variable (Xl) in the same direc-

tion, but the net effect on output varibale will be very small since

(Xl) appears in both numerator and denominator of the output variable.

Figure 3 shows the first column of matrix B in experiments
(b) and (c) (only the effect on the second policy variable 'is.plotted
plotted). Again 8, has more effect on the policy variable than a,.
This figure also shows that both effects decline over time (i.e.,
later values of policy variables were affected less than the earlier

values). The reason for this will be explained shortly.

d) In all the experiments the rank of B (and hence of BVB')
is two (the number of error terms), so U is restricted to just two
dimensions in a linear subspace passing through if (the center of

the set, i.e., the nominal optimum). Thus the inequality:
B 1

A\_g\/; avr <1 -

must be interpreted as first restricting u to this linear subspace
and then to an ellipsoidal set U. By examining the axes of U, one
c;n avdid'ﬁéing"the.invgrge of Vi\explicitly; the axes are the basis
for U. As an illustration, fig. 4-T show the relative patterns of varise
tion (the components.of the éigenvgctors of the matrix V, of unit
length) in set U in experiments (b) and (¢). The main interest
here is in comparing the change in one policy variable relative to
the change in the other. The 20 components of each eigenvector
correspond to the 20 policy variables (two for.each one of the ten
planning years) defined in the experiments. By construction, the
odd components of ‘each eigenvector correspond to the first policy

variable, while the even components correspond to the second policy
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variable. These two groups of components are plotted as two seperate
curves as shown in these figures. Note that the matrix Vl depends
on the matrix_V_which depends in turn on the range of uncertainty

assumed for each error term (denoted by +e in section (3)) and which

surrounds its nominal value €.

 Examining these figures, we observe that setU contains larger
variations in the second policy varibale relative to the optimum but
much smaller variation in the first policy variable. In all experi-
ments later values of both policy variables were affected less than
earlier values. This can be seen from the movement of both curves
towards line (0) with variaiton in the second policy variable dec-
lining by a faster rate than that of the first policy variaﬁle.
The explanation of‘ﬁhese patterns of variaitons can be traced to
the way these two policy variables affect the putput variables over

time as exhibited in the matrix Sl given by equation (27).

Table (1) shows the elements of this matrix in the first five
periods only. The first observation about this matrix is that the
sums of its columms are declining over time (i.e., for the later
values of policy variable) which means that the "total" effect of
policy variables on target variables is declining. This explains
why the overall trend in the effect of errors on policy wvariables
is also declining. The fact that the second policy variable is much
more affected by deviations in error terms than the first due to the
observation that although the.column totals unaer both policy varia-
bles are declining, the total effect of the second policy variable
is larger than that of the first. A final observation from Table 1
is that the effect of the first policy variable on target variables
although less in total than that of the second policy variable, is



Table (1)

The Effect of a Unit Peviation in Policy Varisbles
(in the First 5 Periods) on the Target Variables
Experiments (a), (b) and (c)

Period =~ 1 2 3 b 5

Policy
Variable 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

65 338 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0
113 &8st 62 362 0.0 0.0 0.0 0.0 0.0 0.0
161 325 116 355 68 388 0.0 0.0 0.0 0.0
209 318 168 348 130 380 T5 k15 0.0 0.0
260 313 223 342 188 373 1bk ko9 82 L6
305 306 27Tk 335 246 365 205 Lol 158 43T
363 300 33¢ 331 308 360 281 395 233 k28
L2s 292 390 318 '370 350 342 382 301 k18
486 286 466 311 L45 3hh - L18  37L 38h L1l

562 281 534 311 520 339 k493 370 b59 Lok

mn
\N
[0
O
(WA]

Total 2949 3090 013 2275 2899 1958 2Tk6 1617 25khk
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increasing for later target variables while the reverse is true for
thé sécond policy variable. This may explain why the effect of
deviations in error terms on the second policy variable is declining

at a much faster rate than in the case of first policy wvariable.

To comapre the Joint effect of different groups of errors
amoné.different experiments, Figures 8 and 9 show the componments of
the longest axis (i.e., the normalized eigenvector multiplied by the
équare rootbof the corresponding eigenvalue) of set U in experiments
(z), {v) and (c) for the two poiicy variables. These experiments
differ only in what constitutes the error terms. These figures
reveal the same general characteristics discussed previously and need
no further discussion except to note that these two figures reflect
only the differences in the indiviidual effect of the error terms on
target varibales which are represented by the ﬁatrix S¢ -

e) The case of interacting deviaitons. In all of the discussion
so far we have assumed that although the deviations in the error terms
have to satisfy the equation that describes the elliptical set E
(which pute ~ restriction on the magnitude of these deviations),
they are allowéd to move independently. This was implicitly assumed
when we defined the matrix of the quadratic form of set E, the matrix

V, to be a diagonal matrix.

When the off diagonal elements of the matrix V are nonzero (we
will assume without loss of generality that these elements are equal
i.e., the matrix V is sgmm°trlcal) the ellipse will be in a titled

position with the major axis bel ng either sloped negatively when the
of

L

diagonal elements are negative, or sploped positively when the

offt

b

diagonal elements are positive. In the first case (negative

slove), the deviations in the error terms would move in the opposite
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25, 1.e., the error term would ténd to err in the opposite
directiczzs. This z positive deviation in the first error term, for
sccompained by & negative deviation in

thz sscond erTor terzl(él*i.ﬁgﬂ znd vice versz. This caese will

sams direction, i.e., 2 positive (negative) deviation in the first

error term will be accompained ty a2 positive (negetive) deviation
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= called the cese of positive in-~
terzcticn. To distingaish the case which w2 have been discussing

ss far, we will refer to it ss the case of zerc iatéraction.

That the deviations can be expected to move in a known direc-
tion (same or opposite) may well be the case in certain situationms.
Fo example; vhen a group of exogencus variables or parameters are
projected or estimated by the same method, it is not unplausible
to assume that over-eséiﬁating one parameter is most likely to be

accompanied by over-estimating the second parameter or vice versa:

To examine the e®fect of these concepts, the two cases of
positive and negative interaction were assuﬁéd for the deviations
in error terms in experiments (b) and (e).lo The off diagonal
elements assumed in the experiments were such that (together with
diagonal elerents) they are equivalent to a correlation coefficient

of .60 in experiment (b) and .70 in experiment (e).

Figures 10 and 11 show the components of the longest axis as
a pattern of variation in the two cases of positive and negative
interaction in these two experiments. Table 2 shows the results
for some selctive measures for the fvo cases of positivg and ne-

gative interaction together with the case of zero interaction for
comparison.
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Table (2)

Some Measures of Variation in the Hlet U, in the Case of Zero,
Positive and Negative Interaction between the Error Terms

E iment (b): €= a0 , €, =
xperiment (b): €, MJ. 2 Amw
Interaction Positive , Zero Negative
Coefficient of | 1st ond 1st 2nd 1st 2nd
<mHHW¢M05 of Policy Policy Policy Policy Policy Policy
(o7/u” ) x 100 | Variable Variable Variable Variable Variable Variable
35.70 35.93 31.148 30.15 26.58 2% .16
37.74 111.99 33.43 97.69 28.49 80.89
33.35 76.82 29.65 67.57 25.41 56.8h -
29.56 56.65 26.34 . 50.15 22.68 h2.66
26.24 43.28 23.42 38.50 20.22 33.03
24,31 34,72 21.73 30.97 18.79 26.67
22.18 27.7Th 19.84 24 .80 17.18 21.47
20.61 25.04 -18.43 22.38 15.96 19.36
18.49 20.1k - 16.55 18.02 1h.3h .wm.mw
16.81 16.81 15.0L 15,04 13.0k 13.0h
Length of longest axis \m = 1.3296 1.1712 .9883

Length of second axis £y = o281 , .0394 v .0378
YA 4T.h | 29.8 26.2
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In this table the coefficient of variation was obtained using
the assumption of uniform distribution in set U and Eq. (21) and
using the nominal optimum vector (g’ as the mean vector.

In Figures 10 and 11 the higher value assumed for the effect
of interacted deviétions in experiment (e) fesulted as expected in
a larger difference between the two cases than in experiment (b).
An interesting observation is that in experiment (e) the larger
variation resulted when there was a negative interaction between
the deviations in the error terms and not with a positive inter-
action as in the case of the other experiment. This observation is
also seen in Table 2 whatever the measures of comparison were, co-
efficient of variation or length of axis (the longer the axis, the

the variations). Before commenting on the last observation,
let us examine Table 2 more closely.

1) There is a very large difference in the length of the two
axes. This means that.practically all variations are con-
centrated (or moving) in one direction. This is clear
from all the figures in all experiments where variations
in the two policy variables move together in the same
direction (towards zero). '

2) Examining differences between the three cases of inter-
action in experiments (b) and (e) shows that the larger
the veriation (positive interaction in (b) and negative
interaction in (e) in terms of the coefficient of ‘varia-
tion, the larger the difference between the length of the
two axes (or vice versa). This may be due to the individ-

-ual effect of deviations in error terms on policy variables
as reflected in matrix B. Examining the columns of matrix

B in all experiments (not shown here) together with the
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the results of zero interaction in this table, we observe
a general trenq}; the larger the differences between the
individual effects of error terms on policy variables,
the larger the differences'betweeﬁ the lehgth of the two
axes. This shows how the individual effects of the devia-
tions interact with their amplitudes to shape set U.

The largest variations in experiment (b) occurred with a
positive interaction, while theilargest variations in ex-
periment (e) occurred with a negative interaction. Re-
cglling the basic difference between expefiménts (v) and
(e) (namely that in experimenf (b) changes in error terms
affect target variablés in the saﬁé direction as their -
effect on state variables, while in experiﬁent (e) the

two groups of changes move in the 6pposite direction), we
arrive at the foliowing coﬁciusion: the larger variation in
policy variables occurs when the relﬁtioﬁship between the
effect of deviations in errcr terms on state variables and
the eifect of changes in state variables on target variables

is the same as the relationship between those deviationms.

Finélly, from the experience I had in applying the above method-
ology to the example model, some remarks which may be helpful in apply-

ing it to larger scale simulation models cqﬁ be made.

'1)

Educational simulation models tend to be large because of
more equatlons and not because of. more varlables .per equation.
In the approach presented in chapter three, the simulation
model used to provide the velue of the partiel derivatives
needed for the optlm_zatlon process. Tﬂese partial deriva=

tives vere computed numerically using the flnlte dlfference
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approach. Most of the standard optimization algorithms
that use these numerically computed derivatives spend

most of their time doing function evaluations. One fun-
ction evaluation in the present context corresponds to

the simulation of a r+m1 +m.2 - equation model for N periods
(here R is the number of state variables in the model, m,
is the number of output variables, m, is the number of
policy variables, and N is the planning interval) plus

the rather trival compqﬁation of the objective function.
Thus, the cost for solving the optimization problem depends
mainly on the number of the functions evaluated. In some
of the -experiments discussed in the text, it took about

5.23 seconds, 9 iterations and 100 function evaluations

-to. find the optinmum solution.

One way to save the time needed for function evaluations

is to write the proéram that does these evaluations (i.e.,
that simulates the whole model) in such a way that no
computations are performed other than those that are absol-
utely needed to go ffom the initiai values of the policy
variables (needed to begin the simulation) to the value

of the objective function (at the end of the simulation).

-For example, any set of calculations using exogenous varia-

bles that is not changed as a result of changes in the value

-of the policy variables should not be done in the function-

evaluation program. Rather, these calculations should be
done only once before the solution of the optimal policy

problem begins. This procedure was followed to the best

of my ability in the computations done in this paper.

Another.way to cut down the time needed to solve the opti
mization problem is to choose a good starting point for the
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policy variables. A natural starting point is their desired
values which appear in the objJective functions. This was
found to increase the speed of concergence 1n some of the
experiments which rgsulfed in'cutting down the number of
function evaluations by 10%, the fumber of interations re-
quired by 23%, and the time by 23%. A better starting
point, which may result in a significant saving of time, can
be obtained by first solving a small problem and then using
the answer to this problem as a starting point for the larger
problem. I have used the optimum solution to a smaller but
otherwise equivalent problem (the planning period was 5
years instead of 10) as the starting point for the original
problem. That resulted in cutting down the time substan-
tially (the number- of function evaluations was decreased

by 35%, the number of iterations by L45%, and the time by
37%).

In terms of the size of the pi‘oblems of the type treated
here that the standard optimization ‘algorithms ccan handle,
there is an obvioﬁs trade-o’f between the size of the model,
the number of policy variables, and the length of the plann-
ing period. Unfortunately, without actual experimenting
-with different large scale educational flow models, it is
hard to establish any accurate values to determine what
problems are practical to solve and what are not. On the .
other hand, the major advantage of the procedure introduced
in this peper is that it builds on the computations that '
are usually carried out during the actual planning stages
and that was discussed in the introduction. Thus, the
sirmlation experiments usually done using education flow
models, together with the computer program that are used

to perform those experiments, are the basic building blocks



e

in the procedure presented here. The edditional compu-
tational steps needed to yield the measures aimed at ex-
amining the effect of uncertainty can easily be added to
and incorporated into the existing steps to provide a

homogenous and effective package.
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Footnotes

It is important to note that the amount of devistion given
by §€=- €~ € is not = random quantity that can be
randomly during the optimizetion process. But rather, once
it is determined at the beginming of the iteratioms , it
renains fixed throughout the procedure. Thus., our con-
ceptualizetion of the uncertainty here rests on the obser-
vation that the amount of deviation $€ , although it re-

mains fixed once determined, represents only one possible

realization of many alternative values.

Let ng = 2 and let £ (€, > €,3) be the joint density
function defined on the set (ellipse)E. Then, if (f) is
defined such that: i (€, €2) in E

\F(E\)Ei) - P"c‘b' ((6\161) in E) - A

o ot\\«r\u'\'.')-\‘;.

where M is the area of the ellipse E, and _are said to
be uniformly distributed on E. The range of uncertainty

(+e) has to be relatively small for the uniformity assumption
to be consistent with the restri:tion on the magnitude 6f the

parameters of the model.

See ¢ramer,(19h6) pp. 284-285 and pp. 300-301.

See Zelinsky (1973) pp. 217-219 and Ch. 5.

This is in accordance with optimization procedure used in
éomputation when the objective function consists of sum of

squares.

A retention ratio of .98 was used to compute tbe number of

teachers still available in the system each year.
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Those weights reflected the differences in units of measure-
ment between the target and policy variables in addition to
giving more priority to keeping the first policy variable

near its desired path.

This was the case in experiments (a), (b), (c) and (d).

'This was the case in experiment (e).

Since only the matrix V will be affected by these new assump-
tions, only the seccnd group of measures will reflect the

changes.
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